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Introduction

Reflected BSDEs
Motivation: around switching problems

> Backward Stochastic Differential Equation (Y, Z)

T T
Yt = 5 + / F(t, Yt, Zt)dt - / (Zt)/th
t t

with &€ € 2 and F possibly random function.
> Markovian Setting: Forward-Backward SDEs for (b, o, f, g) Lipschitz (say):

Xe = Xo+ [y b(Xu)du+ [y o(Xu)dW,
Ye =g(Xr)+ [T f(Xe, Yo, Ze)dt — [T(Z:) AW,

> Representation result: Y; = u(t, X;) and Z; = o(X¢)0xu(t, X¢) with u solution to
Oru + b(x)0xu + %Tr[@ixuaa'(x)] + f(x,u,0xuc) =0 and u(T,x) = g(x) .

» Motivation: Control Problem, Pricing formula in non linear markets, Numerical
probabilistic methods for PDEs, etc.
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Motivation: around switching problems

Reflected BSDEs

> One dimensional, ‘Simply’ reflected BSDEs on the boundary /(X): (Y, Z, K)

T T T
Yt = g(XT) +/ f(Xt, Yt, Zt)dt — / (Zt)lth +/ th
t t

t
(C1)Y;: > I(X:) (constrained value process)

(C2) /T (Yt - I(Xt))th =0 (“optimality” of K)
0

K increasing & continuous.
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T T T
Yt = g(XT) +/ f(Xt, Yt, Zt)dt — / (Zt)lth +/ th
t t

t
(C1)Y;: > I(X:) (constrained value process)

(C2) /T (Yt - I(Xt))th =0 (“optimality” of K)
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K increasing & continuous.

> Linked to optimal stopping (pricing of US options)

Y: = ess sup E{g(XT)—i—/ f(Xe, Y, Z:)dt|Fe
7‘67‘[0,7'] t
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Reflected BSDEs

> One dimensional, ‘Simply’ reflected BSDEs on the boundary /(X): (Y, Z, K)

T T T
Yt = g(XT) +/ f(Xt, Yt, Zt)dt — / (Zt)lth +/ th
t t

t
(C1)Y;: > I(X:) (constrained value process)

(C2) /T (Yt - I(Xt))th =0 (“optimality” of K)
0

K increasing & continuous.

> Linked to optimal stopping (pricing of US options)

Y: = ess sup E{g(XT)—i—/ f(Xe, Y, Z:)dt|Fe
7‘67‘[0,7'] t

> Doubly reflected BSDEs: upper boundary (Dynkin games)
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Multidimensional case

> Let D C RY be an open convex domain: (Y, Z, K)

T T T
Yt = g(XT) + / f(Xf, Yt, Zt)dt - / (Zt)/th +/ th
t t t

(C1)Y; € D (constrained value process)
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Multidimensional case

> Let D C RY be an open convex domain: (Y, Z, K)
T T T
Yt = g(XT) +/ f(Xf, Yt, Zt)dt — / (Zt)/th +/ th
t t t
(C1)Y; € D (constrained value process)

> Direction of Reflection? n(y) denotes the (set of) outward normal for y € 9D

1. Normal reflection: dK; = —®.dt, ®, € n(Y;) increasing
2. Oblique reflection: dK; = —H(X;, Yi, Z;)®.dt, H matrix valued s.t.
v(Xt, Yi, Z:) = Hen(Yy) is the oblique outward direction.
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Multidimensional case

> Let D C RY be an open convex domain: (Y, Z, K)

T T T
Yt = g(XT) + / f(Xf, Yt, Zt)dt - / (Zt)/th +/ th
t t t
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> Direction of Reflection? n(y) denotes the (set of) outward normal for y € 9D
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> Minimality condition: fOT |®¢|1{y,¢opydt = 0.
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Multidimensional case

>

Let D C RY be an open convex domain: (Y, Z, K)

T T T
Yt = g(XT) + / f(Xf, Yt, Zt)dt - / (Zt)/th +/ th
t t t

(C1)Y; € D (constrained value process)

> Direction of Reflection? n(y) denotes the (set of) outward normal for y € 9D

1. Normal reflection: dK; = —®.dt, ®, € n(Y;) increasing
2. Oblique reflection: dK; = —H(X;, Yi, Z;)®.dt, H matrix valued s.t.
v(Xt, Yi, Z:) = Hen(Yy) is the oblique outward direction.

v

Minimality condition: fOT |®¢|1{y,¢opydt = 0.

v

Key point: start from v to build H symmetric < this follows Lions & Sznitman
(84)
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Multidimensional case

>

Let D C RY be an open convex domain: (Y, Z, K)

T T T
Yt = g(XT) + / f(Xf, Yt, Zt)dt - / (Zt)/th +/ th
t t t

(C1)Y; € D (constrained value process)

> Direction of Reflection? n(y) denotes the (set of) outward normal for y € 9D

1. Normal reflection: dK; = —®.dt, ®, € n(Y;) increasing
2. Oblique reflection: dK; = —H(X;, Yi, Z;)®.dt, H matrix valued s.t.
v(Xt, Yi, Z:) = Hen(Yy) is the oblique outward direction.

v

Minimality condition: fOT |®¢|1{y,¢opydt = 0.

> Key point: start from v to build H symmetric < this follows Lions & Sznitman
(84)
> Note: we require (%, =) > € > 0.

(IR
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Introduction Reflected BSDEs

Motivation: around switching problems

Starting and Stopping problem (1)

Hamadene and Jeanblanc (01) - Carmona and Ludkovski (10):

> Consider e.g. a power station producing electricity whose price is given by a
diffusion process X: dX; = b(X;)dt + o(X:)dW,

» Two modes for the power station:
mode 1: operating, profit is then f*(X;)dt
mode 2: closed, profit is then f2(X;)dt
— switching from one mode to another has a cost: ¢ > 0

» Management decide to produce electricity only when it is profitable enough.

> The management strategy is (0}, ;) : ; is a sequence of stopping times
representing switching times from mode o;_1 to ¢;.

(at)o<t<T is the state process (the management strategy).
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Introduction Reflected BSDEs

Motivation: around switching problems

Starting and Stopping problem (2)

> Following a strategy a from t up to T, gives

.
o) = [ £ = Y clicgem
t

j=0
> The optimisation problem is then (at t = 0, for ap = 1)

YO1 = Sl:pHJ(av 0)]

At any date t € [0, T] in state i € {1,2}, the value function is Y;.

> Y is solution of a coupled optimal stopping problem

Ytl =ess sup E |:/ f(].,Xs)dS+ (Y.rz - C)1{7.<T} ‘ ]:t:|
t

t<7<T

Y2 =ess sup E U (2, Xs)ds + (Y} — )l ey \ft}
t

t<7<T
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Introduction Reflected BSDEs

Motivation: around switching problems

Oblique RBSDE

> Y is the solution of the following system of reflected BSDEs:

. T . T . T i
Y;:/ F1(Xs, Ys,Zs)ds—/ (z;)’dws+/ dK! | ie{1,2},
t t

t

(C1) Y!>Y?—cand Y2>VY!—¢ (constraint - coupling)

(C2) /T (Y; (Y2 - c))dK; — 0 and /T (Yf (Yo c))dKf -0
0 0

/{ 5
/
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Motivation: around switching problems

Oblique RBSDE

> Yis

the solution of the following system of reflected BSDEs:

. T . T . T i
Y;:/ F1(Xs, Ys,Zs)ds—/ (z;)’dws+/ dK! | ie{1,2},
t t

t

(C1) Y!>Y?—cand Y2>VY!—¢ (constraint - coupling)

(C2) /T (Y; (Y2 - c))dK; — 0 and /T (Yf (Yo c))dKf -0
0 0

> More generally, d modes, the convex set is

DZ{yERdIy’ZmJaX(w—C), 1<i<d}
///
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Motivation: around switching problems

Randomised switching

» d > 3 modes, (£,) homogeneous Markov Chain on {1,...,d} s.t.
]P’(fn :j‘fn_l = i) = p,'j and Pii = 0.
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Randomised switching

» d > 3 modes, (£,) homogeneous Markov Chain on {1,...,d} s.t.
P(&n = jlén—1 = i) = pjj and p;; = 0.

» The agent decides when to switch (7,) but the state is randomly
chosen according to (£,). The agent knows the (pj;).
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Introduction Reflected BSDEs

Motivation: around switching problems

Randomised switching

» d > 3 modes, (£,) homogeneous Markov Chain on {1,...,d} s.t.
P(&n = jlén—1 = i) = pjj and p;j = 0.

» The agent decides when to switch (7,) but the state is randomly
chosen according to (£,). The agent knows the (pj;).

> Yo =sup,EJ(a,0)], J reward following strategy a.

> The solution is given by an obliquely reflected BSDEs with domain

D:={yeR? |y > piy' —c}

1

The reflection is along the axis.
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Motivation: around switching problems

Known results

» Normal Reflection: Existence and uniqueness in classical L2, Lipschitz setting for
a fixed domain (Gegout-Petit & Pardoux 95),
some extension to random domain (Ma & Yong 99)
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Introduction Reflected BSDEs
Motivation: around switching problems

Known results

» Normal Reflection: Existence and uniqueness in classical L2, Lipschitz setting for
a fixed domain (Gegout-Petit & Pardoux 95),
some extension to random domain (Ma & Yong 99)

» Oblique Reflection:

1. Reflection in an orthant: Ramasubramanian (02), f := f(Y).

2. Switching problem: fi(Y,Z) = fi(Y,Z")
(do not cover non-zero sum game)
contributions by several authors: Hu & Tang (08), Hamadene &
Zhang (09), C., Elie & Kharroubi (11)

3. Attempt to general case: existence of a (weak) solution when
f=f(Y)and H= H(t,Y) is Lipschitz in the Markovian setting.
By Gassous, Rascanu & Rotenstein (15)
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Existence
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Results in the Markovian case 5
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Penalised BSDEs

> Let y = @u(y) = nd*(y, D), Veu(y) = 2n(y — P(y)), P normal projection:

T T T
Y! =g(X7) + / Yy, Z)ds — / Z] AW — / H(YS, ZOYVen(YS)ds
t t t
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Results in the Markovian case 5
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Penalised BSDEs

> Let y = @u(y) = nd*(y, D), Veu(y) = 2n(y — P(y)), P normal projection:
T T T
Vo= g+ [ v zhas— [ ziawe— [ HOG. ZDVen(V)as

t t t

> A priori estimates yields (Y, Z) € S? x H? with norms uniform in n and
T
supIE{nd2(Yt",D)+/ \Vap,,(Ys")|2ds} <C
t

t

< At the limit n — oo the process Y" is in D!
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Unlqueness

Penalised BSDEs

> Let y = @u(y) = nd*(y, D), Veu(y) = 2n(y — P(y)), P normal projection:
T T T
Vo= g+ [ v zhas— [ ziawe— [ HOG. ZDVen(V)as

t t t

> A priori estimates yields (Y, Z) € S? x H? with norms uniform in n and
T
supIE{nd2(Yt",D)+/ \Vap,,(Ys")|2ds} <C
t t

< At the limit n — oo the process Y" is in D!
> |s there a limit and does it satisfy an oblique RBSDE?
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Results in the Markovian case 5
Unlqueness

Penalised BSDEs

>

Let y — @a(y) = nd*(y, D), Va(y) = 2n(y — P(y)), P normal projection:
T T T
Vo= g+ [ v zhas— [ ziawe— [ HOG. ZDVen(V)as
t t t
> A priori estimates yields (Y, Z) € S? x H? with norms uniform in n and
T
supIE{nd2(Yt",D)+/ \Vnp,,(Ys")|2ds} <C
t

t

< At the limit n — oo the process Y" is in D!

v

Is there a limit and does it satisfy an oblique RBSDE?

v

Show that u"(t, x) where u"(t, X;) = Y{ is a Cauchy sequence.
< Need o non degenerated, use weak convergence: idea from Hamadene,
Lepeltier, Peng (97) in the red book...
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Results in the Markovian case o
Uniqueness

Methods

1. Linking (Y, Z, K) to a control problem e.g. (randomised) switching.
2. Trying a stability approach: compare two solutions of the RBSDEs...
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1. Linking (Y, Z, K) to a control problem e.g. (randomised) switching.
2. Trying a stability approach: compare two solutions of the RBSDEs...

Stability approach: H™* = H™'(t,y) and D are smooth and D or g is bounded by A.
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Results in the Markovian case

1. Linking (Y, Z, K) to a control problem e.g. (randomised) switching.
2. Trying a stability approach: compare two solutions of the RBSDEs...

Stability approach: H™* = H™'(t,y) and D are smooth and D or g is bounded by A.
> Apply Ito’s formula to ||Y: — Y{||>... works well in the normal case, thanks to
(Y =y,y=P) <0 ,yeR’y eD

> Apply Ito’s formula to (Y; — Y{)TH(t, Y:) "} (Y: — Y!): extra terms appear
coming from covariation terms and reflections.
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Results in the Markovian case

1. Linking (Y, Z, K) to a control problem e.g. (randomised) switching.
2. Trying a stability approach: compare two solutions of the RBSDEs...

Stability approach: H™* = H™'(t,y) and D are smooth and D or g is bounded by A.

> Apply Ito’s formula to ||Y: — Y{||>... works well in the normal case, thanks to
o _
' =y,y=P() <0 ,yeR"y €D

> Apply Ito’s formula to (Y; — Y{)TH(t, Y:) "} (Y: — Y!): extra terms appear
coming from covariation terms and reflections.

> Apply Ito’s formula to (o, 8)(Y: — Y{)TH(t, Y:) " (Y: — Y!) where

[, = ettB IS (10s1+1041+12:)ds
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Results in the Markovian case o
Uniqueness

Stability result

Small time result

. . . - . 2
» Main question: Is I integrable? — In fact the most difficult part is: e” Jo 1z:1%as
integrable?

> We rely on BMO techniques and we are able to get that integrability holds for all
4 < ¢(B,\) (specialy does not depend on the Lipschitz constant of g).

» This leads to
2 4]2
supE[0Ye|?] < CE[lg(Xr) - ¢'|']
t<§

= uniqueness in small time
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Existence

Results in the Markovian case o
Uniqueness

Stability result

Small time result
. . . - . 2
» Main question: Is I integrable? — In fact the most difficult part is: e” Jo 1z:1%as
integrable?

> We rely on BMO techniques and we are able to get that integrability holds for all
4 < ¢(B,\) (specialy does not depend on the Lipschitz constant of g).

» This leads to
supE[0Ye|?] < CE[lg(Xr) - ¢'|']
t<§
= uniqueness in small time

Arbitrary time result

» Divide interval [0, T] in small interval and apply stability result using Backward
induction: Importantly c(8,A) is fixed in this procedure.
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Extension and concluding remarks

Non markovian case:

> Use the stability approach to obtain that Y is a Cauchy sequence (smooth
setting for H and D)

> Existence for bounded terminal condition, f Lipschitz and sublinear in z.

> Existence and uniqueness in the path dependent case UC assumption.
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Extension and concluding remarks

Non markovian case:

> Use the stability approach to obtain that Y is a Cauchy sequence (smooth
setting for H and D)

> Existence for bounded terminal condition, f Lipschitz and sublinear in z.

> Existence and uniqueness in the path dependent case UC assumption.
Various application to switching problem: RBSDEs for randomised switching is well
posed,

For d = 2 and RBSDEs for switching problem, existence and uniqueness for full
dependence in Z for f.
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