Evolution of the Wasserstein distance between the marginals of two Markov processes

Benjamin Jourdain (ENPC CERMICS and INRIA Mathrisk)

Joint work with: Aurélien Alfonsi and Jacopo Corbetta

PDE and Probability Methods for Interactions March 31, 2017

Wasserstein distance

Let $\varrho \geq 1$, P and \widetilde{P} be probability meas. on \mathbb{R}^d s.t. $\int_{\mathbb{R}^d} |x|^{\varrho} (P + \widetilde{P})(\mathrm{d}x) < \infty$.

Definition of the ϱ -Wasserstein distance

$$W_{\varrho}(P,\widetilde{P}) = \left(\inf_{\pi \in \Pi(P,\widetilde{P})} \int_{\mathbb{R}^d \times \mathbb{R}^d} |x - y|^{\varrho} \ \pi(\mathrm{d}x,\mathrm{d}y)\right)^{\frac{1}{\varrho}}$$

where $\Pi(P, \widetilde{P})$ is the set of "coupling" measures on $\mathbb{R}^d \times \mathbb{R}^d$ with respective marginals P and \widetilde{P} .

Dual Representation

 $W_{\varrho}^{\varrho}(P,\widetilde{P}) = \sup\left\{-\int_{\mathbb{R}^d} \phi(x)P(\mathrm{d}x) - \int_{\mathbb{R}^d} \widetilde{\phi}(y)\widetilde{P}(\mathrm{d}y)\right\}$ where the supremum runs over all pairs $(\phi,\widetilde{\phi}) \in L^1(P) \times L^1(\widetilde{P})$ such that $\forall (x,y) \in \mathbb{R}^d \times \mathbb{R}^d, \ -\phi(x) - \widetilde{\phi}(y) \leq |x-y|^{\varrho}.$

Kantorovich potentials

▶ There exists a couple of Kantorovich potentials $(\psi,\widetilde{\psi}) \in L^1(P) \times L^1(\widetilde{P})$ satisfying $-\psi(x) - \widetilde{\psi}(y) \leq |x-y|^\varrho$ and such that

$$W_{\varrho}^{\varrho}(P,\widetilde{P}) = -\int_{\mathbb{R}^d} \psi(x) P(\mathrm{d}x) - \int_{\mathbb{R}^d} \widetilde{\psi}(y) \widetilde{P}(\mathrm{d}y).$$

▶ One is the ϱ -transform of the other :

$$\psi(x) = -\inf_{y \in \mathbb{R}^d} \{|x - y|^{\varrho} + \widetilde{\psi}(y)\}, \widetilde{\psi}(y) = -\inf_{x \in \mathbb{R}^d} \{|x - y|^{\varrho} + \psi(x)\}.$$

▶ For an (the when $\varrho > 1$) optimal coupling π , since

$$\int_{\mathbb{R}^d \times \mathbb{R}^d} -(\psi(x) + \widetilde{\psi}(y)) \pi(\mathrm{d}x, \mathrm{d}y) = W_{\varrho}^{\varrho}(P, \widetilde{P}) = \int_{\mathbb{R}^d \times \mathbb{R}^d} |x - y|^{\varrho} \pi(\mathrm{d}x, \mathrm{d}y)$$
$$\pi(\mathrm{d}x, \mathrm{d}y) \text{ a.e., } -\psi(x) - \widetilde{\psi}(y) = |x - y|^{\varrho}.$$

Objective

- ▶ Obtain a formula for the evolution of $W_{\varrho}^{\varrho}(P_t, \widetilde{P}_t)$ where $(P_t)_{t\geq 0}$ and $(\widetilde{P}_t)_{t\geq 0}$ are the marginals of two Markov processes with respective generators L and \widetilde{L} .
- ► Possible applications :
 - stability estimates when $L = \widetilde{L}$ and $P_0 \neq \widetilde{P}_0$,
 - ▶ Convergence of \widetilde{P}_t to P_t when $(\widetilde{P}_0, \widetilde{L}) \rightarrow (P_0, L)$.

Formal derivation

For each $t \geq 0$, let $(\psi_t, \widetilde{\psi}_t)$ be Kantorovich potentials for (P_t, \widetilde{P}_t)

$$W_\varrho^\varrho(P_t,\widetilde{P}_t) = -\int_{\mathbb{R}^d} \psi_t(x)\, P_t(\mathrm{d} x) - \int_{\mathbb{R}^d} \widetilde{\psi}_t(x)\, \widetilde{P}_t(\mathrm{d} x).$$

For every $s \ge 0$

$$W_{\varrho}^{\varrho}(P_{s},\widetilde{P}_{s}) \geq -\int_{\mathbb{R}^{d}} \psi_{t}(x) P_{s}(\mathrm{d}x) - \int_{\mathbb{R}^{d}} \widetilde{\psi}_{t}(x) \widetilde{P}_{s}(\mathrm{d}x).$$

As a consequence

$$\begin{aligned} W_{\varrho}^{\varrho}(P_{s},\widetilde{P}_{s}) - W_{\varrho}^{\varrho}(P_{t},\widetilde{P}_{t}) \\ &\geq \int_{\mathbb{R}^{d}} \psi_{t}(x) (P_{t}(\mathrm{d}x) - P_{s}(\mathrm{d}x)) + \int_{\mathbb{R}^{d}} \widetilde{\psi}_{t}(x) (\widetilde{P}_{t}(\mathrm{d}x) - \widetilde{P}_{s}(\mathrm{d}x)) \end{aligned}$$

Formal derivation (2)

$$\int_{\mathbb{R}^d} \psi_t(x) (P_t(\mathrm{d}x) - P_s(\mathrm{d}x)) = \int_s^t \int_{\mathbb{R}^d} L \psi_t(x) P_r(\mathrm{d}x) \mathrm{d}r$$

For the choice s = t + h with h > 0, we deduce

$$\frac{1}{h} \Big(W_{\varrho}^{\varrho}(P_{t+h}, \widetilde{P}_{t+h}) - W_{\varrho}^{\varrho}(P_{t}, \widetilde{P}_{t}) \Big) \\
\geq \frac{1}{h} \Big(- \int_{t}^{t+h} \int_{\mathbb{R}^{d}} \mathcal{L}\psi_{t}(x) P_{r}(\mathrm{d}x) \mathrm{d}r - \int_{t}^{t+h} \int_{\mathbb{R}^{d}} \widetilde{\mathcal{L}}\widetilde{\psi}_{t}(x) P_{r}(\mathrm{d}x) \mathrm{d}r \Big)$$

Taking the limit $h \to 0^+$ yields

$$\frac{\mathrm{d}}{\mathrm{d}t^+}W_\varrho^\varrho(P_t,\widetilde{P}_t)\geq -\int_{\mathbb{R}^d}L\psi_t(x)P_t(\mathrm{d}x)-\int_{\mathbb{R}^d}\widetilde{L}\,\widetilde{\psi}_t(x)\widetilde{P}_t(\mathrm{d}x)$$

In a symmetric way, the choice s = t - h leads to

$$\frac{\mathrm{d}}{\mathrm{d}t^{-}}W_{\varrho}^{\varrho}(P_{t},\widetilde{P}_{t}) \leq -\int_{\mathbb{R}^{d}}L\psi_{t}(x)P_{t}(\mathrm{d}x) - \int_{\mathbb{R}^{d}}\widetilde{L}\,\widetilde{\psi}_{t}(x)\widetilde{P}_{t}(\mathrm{d}x).$$

A generic heuristic formula

$$W_{\varrho}^{\varrho}(P_t, \widetilde{P}_t) = -\int_{\mathbb{R}^d} \psi_t(x) P_t(\mathrm{d}x) - \int_{\mathbb{R}^d} \widetilde{\psi}_t(y) \widetilde{P}_t(\mathrm{d}y)$$

For all $t \ge 0$

$$\frac{\mathrm{d}}{\mathrm{d}t}W_{\varrho}^{\varrho}(P_t,\widetilde{P}_t) = -\int_{\mathbb{R}^d} L\psi_t(x)P_t(\mathrm{d}x) - \int_{\mathbb{R}^d} \widetilde{L}\,\widetilde{\psi}_t(x)\widetilde{P}_t(\mathrm{d}x)\,.$$

Integral formulation: for all $0 \le s \le t$

$$W_{\varrho}^{\varrho}(P_{t},\widetilde{P}_{t}) - W_{\varrho}^{\varrho}(P_{s},\widetilde{P}_{s}) =$$

$$- \int_{s}^{t} \left[\int_{\mathbb{R}^{d}} L\psi_{r}(x) P_{r}(\mathrm{d}x) + \int_{\mathbb{R}^{d}} \widetilde{L} \widetilde{\psi}_{r}(x) \widetilde{P}_{r}(\mathrm{d}x) \right] \mathrm{d}r.$$

Main Issues

We have to check the following facts in order to make the previous heuristic rigorous:

- $\psi_t \in Dom(L)$ and $\widetilde{\psi}_t \in Dom(\widetilde{L})$?
- $L\psi_t \in L_t^{1,\text{loc}}(L^1(P_t))$ and $\widetilde{L}\widetilde{\psi}_t \in L_t^{1,\text{loc}}L^1(\widetilde{P}_t)$?
- ▶ Differentiability of $t \mapsto W_{\varrho}^{\varrho}(P_t, \widetilde{P}_t)$?

Pure Jumps Markov Processes

$$Lf(x) = \lambda(x) \int_{\mathbb{R}^d} (f(y) - f(x)) k(x, dy)$$
$$\widetilde{L}f(x) = \widetilde{\lambda}(x) \int_{\mathbb{R}^d} (f(y) - f(x)) \widetilde{k}(x, dy).$$

- $\blacktriangleright \lambda$, $\widetilde{\lambda}$ jump rates,
- \triangleright k, k probability kernels

Assumptions

- $\sup_{x \in \mathbb{R}^d} \max(\lambda(x), \widetilde{\lambda}(x)) < \infty$
- $t\mapsto \int_{\mathbb{R}^d} |x|^{\varrho(1+\varepsilon)} (P_t(\mathrm{d} x)+\widetilde{P}_t(\mathrm{d} x))$ is locally bounded.

Lemma

Let $\alpha \geq 1$. If $\int_{\mathbb{R}^d} |x|^{\alpha} P_0(\mathrm{d}x) < \infty$ and $\sup_{x \in \mathbb{R}^d} \int_{\mathbb{R}^d} k(x,\mathrm{d}y) |y-x|^{\alpha} < +\infty$, then $t \mapsto \int_{\mathbb{R}^d} |x|^{\alpha} P_t(\mathrm{d}x)$ is locally bounded.

Main Result

Theorem

- ▶ $t \mapsto \int_{\mathbb{R}^d} |L\psi_t(x)| P_t(\mathrm{d}x) + \int_{\mathbb{R}^d} |\widetilde{L} \, \widetilde{\psi}_t(x)| \widetilde{P}_t(\mathrm{d}x)$ is locally bounded on $(0, +\infty)$.
- ▶ $t \mapsto W_{\varrho}^{\varrho}(P_t, \widetilde{P}_t)$ is locally Lipschitz on $(0, +\infty)$ and for almost every $t \in (0, \infty)$

$$\frac{\mathrm{d}}{\mathrm{d}t}W_{\varrho}^{\varrho}(P_t,\widetilde{P}_t) = -\int_{\mathbb{R}^d} L\psi_t(x)P_t(\mathrm{d}x) - \int_{\mathbb{R}^d} \widetilde{L}\,\widetilde{\psi}_t(x)\widetilde{P}_t(\mathrm{d}x).$$

▶ for every $t \ge 0$

$$\begin{split} W_{\varrho}^{\varrho}(P_{t},\widetilde{P}_{t}) - W_{\varrho}^{\varrho}(P_{0},\widetilde{P}_{0}) &= \\ &- \int_{0}^{t} \left[\int_{\mathbb{R}^{d}} L\psi_{r}(x) P_{r}(\mathrm{d}x) + \int_{\mathbb{R}^{d}} \widetilde{L} \, \widetilde{\psi}_{r}(x) \widetilde{P}_{r}(\mathrm{d}x) \right] \mathrm{d}r \end{split}$$

How to deal with the issues?

Proposition

Let P, \widetilde{P} be two probability measures on \mathbb{R}^d such that $\int_{\mathbb{R}^d} |x|^{\varrho(1+\varepsilon)} P(\mathrm{d}x) + \int_{\mathbb{R}^d} |y|^{\varrho(1+\varepsilon)} \widetilde{P}(\mathrm{d}y) < \infty \text{ for some } \varepsilon \geq 0.$ Then $(\psi, \widetilde{\psi}) \in L^{1+\varepsilon}(P) \times L^{1+\varepsilon}(\widetilde{P})$.

▶ For t > 0, P_t is equivalent to $Q = \sum_{n \in \mathbb{N}} \frac{Q_n}{n!}$ where

$$Q_n(\mathrm{d} x_n) = \int_{(\mathbb{R}^d)^n} P_0(\mathrm{d} x_0) \prod_{j=0}^{n-1} \lambda(x_j) k(x_j, \mathrm{d} x_{j+1}).$$
 Permits to

transfer integrability from one marginal to another.

Moreover $\int \lambda(x)k(x,\mathrm{d}y)P_t(\mathrm{d}x)$ is absolutely continuous with respect to Q and for f measurable and $0 \le s \le t$, if $\int_s^t \int_{\mathbb{R}^d \times \mathbb{R}^d} \lambda(x)|f(y)-f(x)|k(x,\mathrm{d}y)P_r(\mathrm{d}x)\mathrm{d}r < +\infty$, then $\int_{\mathbb{R}^d} f(x)(P_t(\mathrm{d}x)-P_s(\mathrm{d}x)) = \int_s^t \int_{\mathbb{R}^d} Lf(x)P_r(\mathrm{d}x)\mathrm{d}r$.

Application to Birth and Death process

$$\begin{cases} Lf(x) = \eta(x)(f(x+1) - f(x)) + \nu(x)(f(x-1) - f(x)), \ x \in \mathbb{N} \\ \nu(0) = 0 \end{cases}$$

Theorem (Joulin 2007)

$$\forall t \geq 0, \ W_1(P_t, \widetilde{P}_t) \leq e^{-\kappa t} W_1(P_0, \widetilde{P}_0)$$

where $\kappa:=\inf_{x\in\mathbb{N}}(\eta(x)+\nu(x+1)-\eta(x+1)-\nu(x))$ is the Wasserstein curvature

Estimation of $W_{\varrho}(P_t, \widetilde{P}_t)$ with $\varrho > 1$?

Extension to general ρ

Proposition

Assume affine growth of the birth rate η . Let $\rho > 1$, P_0 and P_0 such that $\int_{\mathbb{N}} x(P_0(\mathrm{d}x) + P_0(\mathrm{d}x)) < \infty$. Then, there exists a constant $C_{\rho} \in [0, +\infty)$ such that for any t > 0,

$$\begin{split} W_{\varrho}^{\varrho}(P_{t},\widetilde{P}_{t}) &\leq W_{\varrho}^{\varrho}(P_{0},\widetilde{P}_{0})e^{-\kappa\varrho t} \\ &+ C_{\varrho}(\operatorname{Lip}(\eta) + \operatorname{Lip}(\nu)) \int_{0}^{t} e^{\kappa\varrho(r-t)} \big(W_{1}(P_{r},\widetilde{P}_{r}) \\ &+ 1_{\{\varrho > 2\}} W_{\varrho-1}^{\varrho-1}(P_{r},\widetilde{P}_{r})\big) \mathrm{d}r. \end{split}$$

When $\varrho \in (1,2]$, $C_{\varrho} = 1$ and the second term is bounded from above by $(\operatorname{Lip}(\eta) + \operatorname{Lip}(\nu))W_1(P_0, \widetilde{P}_0) \frac{e^{-\kappa t} - e^{-\kappa \varrho t}}{\kappa(\varrho-1)}$.

Sketch of the proof

Let π_r be an optimal coupling at time r

$$W_{\varrho}^{\varrho}(P_{t}, \widetilde{P}_{t}) = W_{\varrho}^{\varrho}(P_{0}, \widetilde{P}_{0})$$

$$+ \int_{0}^{t} \sum_{x,y \in \mathbb{N}} \pi_{r}(x,y) \left(\eta(x)(\psi_{r}(x) - \psi_{r}(x+1)) + \nu(x)(\psi_{r}(x) - \psi_{r}(x-1)) + \eta(y)(\widetilde{\psi}_{r}(y) - \widetilde{\psi}_{r}(y+1)) + \nu(y)(\widetilde{\psi}_{r}(y) - \widetilde{\psi}_{r}(y-1)) \right) dr$$

By optimality, $\pi_r(\mathrm{d} x,\mathrm{d} y)$ a.e., $-\psi_r(x)-\widetilde{\psi}_r(y)=|x-y|^\varrho$. Moreover, for all $(z,w)\in\mathbb{N}^2$, $-\psi_r(z)-\widetilde{\psi}_r(w)\leq |z-w|^\varrho$ so that

$$\psi_{r}(x) + \widetilde{\psi}_{r}(y) - (\psi_{r}(x+1) + \widetilde{\psi}_{r}(y)) \leq |x+1-y|^{\varrho} - |x-y|^{\varrho},$$

$$\psi_{r}(x) + \widetilde{\psi}_{r}(y) - (\psi_{r}(x) + \widetilde{\psi}_{r}(y+1)) \leq |y+1-x|^{\varrho} - |x-y|^{\varrho},$$

$$\psi_{r}(x) + \widetilde{\psi}_{r}(y) - (\psi_{r}(x+1) + \widetilde{\psi}_{r}(y+1)) \leq |x-y|^{\varrho} - |x-y|^{\varrho} = 0.$$

One-dimensional Piecewise Deterministic Markov Processes

$$Lf(x) = V(x)f'(x) + \lambda(x) \int_{\mathbb{R}} (f(y) - f(x)) k(x, dy)$$

- (i) The vector field V is locally Lipschitz and bounded.
- (ii) $\lambda(x)$ is continuous and $\sup_{x} \lambda(x) < \infty$.
- (iii) $\exists M < \infty$, $\sup_{x \in \mathbb{R}} \int_{\mathbb{R}} 1_{|x-y| > M} k(x, dy) = 0$.
- (iv) \blacktriangleright either $F_0(x) = P_0((-\infty, x])$ is continuous and $\forall x, \ P(\{x\}) = 0 \Rightarrow \forall x, \int_{\mathbb{R}} k(y, dx) P(dy) = 0$
 - or $P_0(\mathrm{d} x)$ and $\int_{\mathbb{R}} e^{-\frac{|y|^2}{2}} k(y, \, \mathrm{d} x) \mathrm{d} y$ have densities w.r.t. $\mathrm{d} x$, .
- (v) $x \mapsto k(x, dy)$ is continuous for the weak topology.
- (vi) $\int_{\mathbb{R}} |x|^{\varrho(1+\varepsilon)} P_0(\mathrm{d}x) < \infty$.
- (vii) F_0 is increasing and

$$\forall y \geq 0, \ \sup_{x \in \mathbb{R}} \frac{F_0(x+y)}{F_0(x)} \vee \frac{1 - F_0(x-y)}{1 - F_0(x)} \leq c e^{Cy}.$$

The hypotheses on the initial marginal are satisfied by

$$P_0^{\varepsilon} = \frac{1}{2\varepsilon} e^{-\frac{|x|}{\varepsilon}} \star P_0$$
 such that $W_{\varrho}^{\varrho}(P_0^{\varepsilon}, P_0) = \varepsilon^{1+\varrho} \Gamma(1+\varrho)$.

Evolution of the Wassertein distance

Theorem

Let $(P_t)_{t\geq 0}$ and $(\widetilde{P}_t)_{t\geq 0}$ be the time-marginals of two real valued PDMP satisfying the previous Assumptions. Then for every $t\geq 0$

$$W_{\varrho}^{\varrho}(P_{t},\widetilde{P}_{t})-W_{\varrho}^{\varrho}(P_{0},\widetilde{P}_{0})=-\int_{0}^{t}\left(\int_{\mathbb{R}}L\psi_{r}P_{r}+\int_{\mathbb{R}}\widetilde{L}\widetilde{\psi}_{r}\widetilde{P}_{r}\right)dr.$$

- ▶ Approximation of *L* by $\frac{e^{\varepsilon L}-1}{\varepsilon}$ which is a pure jump generator with intensity $\leq \frac{1}{\varepsilon}$,
- In general, no equivalent measure permitting to transfer integrability from one marginal to another,
- ▶ Use of the explicit optimal coupling in dimension d = 1 given by the comonotonic inverse transform sampling :

$$\psi_t'(x) = \varrho(\widetilde{F}_t^{-1}(F_t(x)) - x)|x - \widetilde{F}_t^{-1}(F_t(x))|^{\varrho - 2}.$$

Thank you for your attention.