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Motivating problems

» McKean SDEs for fluid turbulent subscale models [Pope 95, 03; Durbin Speziale 94, Dreeben Pope
98, Waclawczyk Pozorski Minier 04]
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Ingredient of the problem :

- Singular interaction (mean field) kernel in the diffusion term.
- degenerate diffusion coefficient



Motivating problems

» McKean SDEs for fluid turbulent subscale models [Pope 95, 03; Durbin Speziale 94, Dreeben Pope
98, Waclawczyk Pozorski Minier 04]

t
Xt:X()-f—/ Ust
0

t t
(Ui, 01) = (Uo’90)+/ Ep [6(Us, ©5) | X] d8+/ Ep [v(Us, ©5) | Xs] AW,
0 0

Ingredient of the problem :
- Singular interaction (mean field) kernel in the diffusion term.
- degenerate diffusion coefficient

» Calibrated Local and Stochastic Volatility (LSV) models [Gyéngy 86; Guyon Henry-Labordére 12]
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dY; = a(t,Y;)dB; + £(t)dt

ooup(t, St)SedWy

where opyp(t, y) is the Dupire’s local volatility function
[Abergel Tachet 2010 , Jourdain Zhou 2017]



Generic form

Find (X, Y, p) such that p, = Po (X;,Y;) ' satisfying
t t
X; = Xo +/ b(Xs,Ys)ds—s-/ o(X.)dB,
0 0
t t
Y =Y+ / A[Xs§ Ps}dS + / F[Xs; ps]dWs
0 0
(Xo, Yo) is po-distributed

(Wy; t > 0),(By; t > 0) are two independent R¢ standard Brownian motions.
A and I defined for (z, f) € R* x L'(R% x R?), as
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Toy model number one

Let’s put b = 0 and go back this drift term with Girsanov transform.
This impose that strong ellipticity is assumed for o: 3 a., ax > Oforall z € RY,

0 < a.ld < o(z)o(z)" < a*ld.

Let’s put ¢ = 0, for simplicity

In addition o is such that X exists.
v is Lipschitz and bounded on R<, and satisfies the strong ellipticity constraint : 3 a., @™ > 0,
forall (z,y) € R x R?,

0 < auld < y(z,y)v(z,9)" < a*Hd.

po is L*(IR*?) and such that pg’ () = [, po(z,y)dy > m > 0.

Then there exists a unique strong solution to
t
Xt = Xo +/ 0(Xs)dBs
0

t
Y= Yo+ [ Bp(r)|XJdw.
0




Main argument number one : Linear/Nonlinear Fokker Planck equation

Given f € C((0.7); L*(B*) (1 L2((0,7); HL,, (R*)),

There exists a unique solution in C((0, T); L*(R?%)) n L*((0, T); H, ,,(R**)) to
Aep(t, x,y) — ytrace(Vi x (o(x)o'(x)p(t, ,y))

—itrace(V3 x (I'[z, f]M[z, f]p) = 0,
forall (t,z,y) € (0,T) x R*?,

p(0,y,u) = po(x,y), forall (z,y) € xR,

and

T
sup._[lp(t) ey + / (VP03 2y + IV (O[3 sz ) db < M
0

0<t<

gives the existence of a solution pin C((0, T); L*(R%)) N L*((0,T); H. .. (R?*?)) to the
nonlinear Fokker Planck equation.



Main argument number two : iterative construction of the process

Assume that .S is continuous function of (¢, x), strongly elliptic uniformly in time. Assume that
V.5(t,-) € LEMD(R?), uniformly with respect to ¢ € [0,T], b € LE*™ (R x R%).

loc
Then there exists a unique strong solution up to the explosion time for equation

dX; = S(t, X;)dW,.

(In our case, S is will be also bounded so, there is no explosion).
Set (V2,0 <t <T) = Yo, and, forn > 1, given (Y;*; t > 0) in (Q, F,P),

t
=Yoot [Be b)) X aw..
0
Given p" = Law(Y™) € C((0,7); L*(R*")) N L*((0,T); H. ,(R*)), we can prove that

Tl; p") = e [y(Y;") | Xe = 2] € L™ it [oa po(a, w)du > 0

te(o

T
Be | 0 = Y| ST [ e [ ) 1] - B 02 1 X)) ds
’ 0

T
< HV”QLW/ Ep [Ee [|Y2" — Y71 XS]] ds
0




And what when o could degenerate ?

Strategy one
t
X: = Xo +/ Usds+c By
0
t t
Vo= Yo+ [ Belav) Xolds+ [ Erly(vi) | X aw.,
0 0
Strategy two
t
X = Xo +/ Usds
0
t t
Yt = YO +/ AS[X,S;ps}ds +/ rs[Xsyps]dWs
0 0

+ use recent advances on the flow regularity of McKean SDE’s to get the regularity of p ? [Crisan,
McMurray 2017]



Toy model number two
The moderated local McKean SDE :

t
Xt :X0+/ a(p(S,XS))dVVS, OStST
0

p € C2([0,T) x R?) is such that the law of X is p(t, =)dz.

Hypotheses :
» o Lipschitz, C® mapping on R
» Strong ellipticity Vz € R%, Yy € R, %0 (y)z > mo|z|>
> po in the Holder space H2T with 0 < o < 1.
» non negativity for the diffusion matrix leading the Fokker-Planck PDE written on divergence
form :

Vo € R, Vy € R,z" ((00™) (y)y + (00™)(y)) = > 0.

is used to obtain uniqueness of the Fokker-Planck equation.
Strong ellipticity on the leading matrix

v

there exists may > 0, Vo € RY,Vy € R, z* ((o0™) (W)y + (c0™)(y)) x > may|z|*.

+

The McKean Vlasov Fokker-Planck equation has a solution in H'"%:2%¢ _and the nonlinear

SDE admits a unique strong solution.
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Toy model number two

The moderated local McKean SDE revisited : d = 1

t
X: = Xo +/ o(p(s, Xs))dWs, 0<t<T
0
p € L*([0,T]; L*(R)) is such that the law of X is p(t, z)dz.

Hypotheses :
» u s o(u)isin Cy (R).

> u s a(u) = (0 (u)u) = 20" (u)o(u)u + o (u) is also bounded continuous on R, and
au) = 20" (u)o(u)u 4+ o (u) >n > 0, uniformy in u

» ug € L¥(R) N L' (R), and [ |z|?uo(z)dt < oo

Under the above hypotheses, there exist a solution in law to the above SDE. l



Main argument number one : PDE analysis of the smoothed FK equation

We denote 02(p) := o2(p) + ¢, Vp € R.
that maintains the strict positivity hypothesis on o2 : (¢2(p)p)’ = (¢*(p))’ +¢, Yu € R.

aus 1 2/ e\ ey
ETae iAz(ag(u Ju?) =0

uo givenin L?

Under the previous hypotheses equation (1) admits a unique solution in L2([0, T]; H*(R))
satisfying the energy inequality

T
2 2 2
sup u(t)l|Zz2 ) +6/ 10zu() |22y dt < lluollZz(r)
te(0,7] 0

< +o0.
L2([0,T] xR)

ox

sup H 9 (o2 (u)u®)

(u®,€) is a Cauchy sequence in L?((0,T) x R).
We have also the uniqueness of the solution of the limit equation in L2((0,T) x R)) such that
(02(u)u’) isin L*([0, T]; H' (R)).

Proof : mainly adapted from Vasquez 06 book on porous media equation (Chapter 5).



Main argument number two : analysis of the smoothed SDE

Step 1) From u* solution in L2([0, T]; H*(R)) of the smoothed FP equation, we construct (by
mean of smoothing and martingale problem) a weak solution to

t
X = Xo+ / Vo2 (w (5, X2)dW,
0
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Step 2) /202(u(t,x)) > eforall (¢,z) € [0,T] x R. Law(X}) admits a density h° satisfying

1
(8, @) = G (uo) + 5 £2uGY_ (02 (u) = 7*)h3) (x)ds
0
for G} the Gaussian semigroup with variance ~2t. For a good choice of ~, this allows to prove
that k¢ is in L?, so h® = u*, and we have obtain a unique weak solution to the smoothed
nonlinear SDE.
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0
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that k¢ is in L?, so h® = u*, and we have obtain a unique weak solution to the smoothed
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Step 3) Tightness of the sequence (X°, €) and convergence in L? of the densities. Identification
of the limit with rather classical arguments



This is joint work with Jean Francois Jabir (University of Valpareiso )

Bibliography
B., Fontbona, Jabin, Jabir. Local existence of analytical solutions to an incompressible Lagrangian stochastic model in a periodic
domain.CoPDE, 2013.
B. and Jabir. On confined McKean Langevin processes satisfying the mean no-permeability boundary condition. SPA 2011
B. and Jabir. Lagrangian stochastic models with specular boundary condition. JFA 2015
B., J. Espina, etall. Modeling the wind circulation around mills with a Lagrangian stochastic approach. SMAI-JCM 2016.
B. and Jabir. Some McKean models with non smooth nonlinear diffusion coefficients Preprint.

References
Crisan and McMurray Smoothing properties of McKean-Vlasov SDEs 2017
Durbin and Speziale Realizability of second-moment closure via stochastic analysis. J. Fluid Mech. 1994
Guyon and Henry-Labordere The Smile Calibration Problem Solved 2011.
Jourdain, and Méléard. Propagation of chaos and fluctuations for a moderate model with smooth initial data, Ann. Inst. H. P Probab.
Statist., 1998.
Jourdain, Zhou. Existence of a calibrated regime switching local volatility model and new fake Brownian motions. Preprint 2016.
Pope. Lagrangian pdf methods for turbulent flows Annu. Rev. Fluid Mech. 1994
Minier and Pozorski Wall-boundary conditions in probability density function methods and application to a turbulent channel flow Physics
of Fluids, 1999.
Vasquez, J. L. The Porous Medium Equation, Oxford University Publications, 2006.

Thank you for your attention



