PDE strategies for the existence of McKean Nonlinear diffusion models

Mireille Bossy

Worshop on PDE and Probability Methods for Interactions March 30-31, 2017, Sophia Antipolis

Motivating problems

McKean SDEs for fluid turbulent subscale models [Pope 95, 03; Durbin Speziale 94, Dreeben Pope 98, Waclawczyk Pozorski Minier 04]

$$\begin{cases} X_t = X_0 + \int_0^t U_s ds \\ (U_t, \Theta_t) = (U_0, \Theta_0) + \int_0^t \mathbb{E}_{\mathbb{P}} \left[\ell(U_s, \Theta_s) \, | \, X_s \right] ds + \int_0^t \mathbb{E}_{\mathbb{P}} \left[\gamma(U_s, \Theta_s) \, | \, X_s \right] dW_s, \end{cases}$$

Ingredient of the problem :

- Singular interaction (mean field) kernel in the diffusion term.
- degenerate diffusion coefficient

Motivating problems

McKean SDEs for fluid turbulent subscale models [Pope 95, 03; Durbin Speziale 94, Dreeben Pope 98, Waclawczyk Pozorski Minier 04]

$$\begin{cases} X_t = X_0 + \int_0^t U_s ds \\ (U_t, \Theta_t) = (U_0, \Theta_0) + \int_0^t \mathbb{E}_{\mathbb{P}} \left[\ell(U_s, \Theta_s) \, | \, X_s \right] ds + \int_0^t \mathbb{E}_{\mathbb{P}} \left[\gamma(U_s, \Theta_s) \, | \, X_s \right] dW_s, \end{cases}$$

Ingredient of the problem :

- Singular interaction (mean field) kernel in the diffusion term.
- degenerate diffusion coefficient

Calibrated Local and Stochastic Volatility (LSV) models [Gyöngy 86; Guyon Henry-Labordére 12]

$$\begin{cases} \frac{dS_t}{S_t} = rdt + \frac{a(Y_t)}{\sqrt{\mathbb{E}[a^2(Y_t)|S_t]}} \sigma_{\mathsf{Dup}}(t, S_t) S_t dW_t \\ dY_t = \alpha(t, Y_t) dB_t + \xi(t) dt \end{cases}$$

where $\sigma_{\rm Dup}(t,y)$ is the Dupire's local volatility function [Abergel Tachet 2010 , Jourdain Zhou 2017]

Generic form

Find (X, Y, ρ) such that $\rho_t = \mathbb{P} \circ (X_t, Y_t)^{-1}$ satisfying

$$\begin{cases} X_t = X_0 + \int_0^t b(X_s, Y_s) ds + \int_0^t \sigma(X_s) dB_s \\ Y_t = Y_0 + \int_0^t \Lambda[X_s; \rho_s] ds + \int_0^t \Gamma[X_s; \rho_s] dW_s \end{cases}$$

 (X_0, Y_0) is μ_0 -distributed

 $(W_t; t \ge 0), (B_t; t \ge 0)$ are two independent \mathbb{R}^d standard Brownian motions. Λ and Γ defined for $(x, f) \in \mathbb{R}^d \times L^1(\mathbb{R}^d \times \mathbb{R}^d)$, as

$$\Lambda[x;f] = \frac{\int_{\mathbb{R}^d} \ell(y) f(x,y) dy}{\int_{\mathbb{R}^d} f(x,y) dy} \mathbb{1}_{\{\int_{\mathbb{R}^d} f(x,y) dy \neq 0\}}$$

and
$$\Gamma[x;f] = \frac{\int_{\mathbb{R}^d} \gamma(y) f(x,y) dy}{\int_{\mathbb{R}^d} f(x,y) dy} \mathbbm{1}_{\{\int_{\mathbb{R}^d} f(x,y) dy \neq 0\}}.$$

Generic form

Find (X, Y, ρ) such that $\rho_t = \mathbb{P} \circ (X, Y_t)^{-1}$ satisfying

$$\begin{cases} X_t = X_0 + \int_0^t b(X_s, Y_s) ds + \int_0^t \sigma(X_s) dB_s \\ Y_t = Y_0 + \int_0^t \Lambda[X_s; \rho_s] ds + \int_0^t \Gamma[X_s; \rho_s] dW_s \end{cases}$$

 (X_0, Y_0) is μ_0 -distributed

 $(W_t; t \ge 0), (B_t; t \ge 0)$ are two independent \mathbb{R}^d standard Brownian motions. Λ and Γ defined for $(x, f) \in \mathbb{R}^d \times L^1(\mathbb{R}^d \times \mathbb{R}^d)$, as

$$\Lambda[\mathbf{x};f] = \frac{\int_{\mathbb{R}^d} \ell(y) f(\mathbf{x}, y) dy}{\int_{\mathbb{R}^d} f(\mathbf{x}, y) dy} \mathbb{1}_{\{\int_{\mathbb{R}^d} f(x, y) dy \neq 0\}}$$

and
$$\Gamma[x; f] = \frac{\int_{\mathbb{R}^d} \gamma(y) f(x, y) dy}{\int_{\mathbb{R}^d} f(x, y) dy} \mathbbm{1}_{\{\int_{\mathbb{R}^d} f(x, y) dy \neq 0\}}.$$

Toy model number one

Let's put b = 0 and go back this drift term with Girsanov transform. This impose that strong ellipticity is assumed for $\sigma: \exists a_*, a^* > 0$,for all $x \in \mathbb{R}^d$,

$$0 < a_* \operatorname{Id} \leq \sigma(x) \sigma(x)^t \leq a^* \operatorname{Id}.$$

Let's put $\ell = 0$, for simplicity

Theorem B. & Jabir preprint

In addition σ is such that X exists. γ is Lipschitz and bounded on \mathbb{R}^d , and satisfies the strong ellipticity constraint : $\exists \alpha_*, \alpha^* > 0$, for all $(x, y) \in \mathbb{R}^d \times \mathbb{R}^d$,

$$0 < \alpha_* \operatorname{Id} < \gamma(x, y) \gamma(x, y)^t < \alpha^* \operatorname{Id}.$$

 $\rho_0 \text{ is } L^2(\mathbb{R}^{2d}) \text{ and such that } \rho_0^X(x) = \int_{\mathbb{R}^d} \rho_0(x,y) dy \geq m > 0.$

Then there exists a unique strong solution to

$$\begin{cases} X_t = X_0 + \int_0^t \sigma(X_s) dB_s \\ Y_t = Y_0 + \int_0^t \mathbb{E}[\gamma(Y_s)|X_s] dW_s \end{cases}$$

Main argument number one : Linear/Nonlinear Fokker Planck equation

Given $f \in \mathcal{C}((0,T); L^2(\mathbb{R}^{2d})) \cap L^2((0,T); H^1_{x,y}(\mathbb{R}^{2d}))$,

Lemma

There exists a unique solution in $\mathcal{C}((0,T); L^2(\mathbb{R}^{2d})) \cap L^2((0,T); H^1_{x,y}(\mathbb{R}^{2d}))$ to

$$\begin{aligned} \left(\begin{array}{l} \partial_t \rho(t,x,y) - \frac{1}{2} \mathrm{trace}(\nabla_x^2 \times (\sigma(x)\sigma^t(x)\rho(t,x,y)) \\ - \frac{1}{2} \mathrm{trace}(\nabla_y^2 \times (\Gamma[x,f]\Gamma^t[x,f]\rho) = 0, \\ & \text{for all } (t,x,y) \in (0,T) \times \mathbb{R}^{2d}, \end{aligned} \right. \\ \left. \rho(0,y,u) = \rho_0(x,y), \ \text{for all } (x,y) \in \times \mathbb{R}^{2d}. \end{aligned} \end{aligned}$$

and

$$\sup_{0 \le t \le T} \|\rho(t)\|_{L^2(\mathbb{R}^{2d})}^2 + \int_0^T \left(\|\nabla_x \rho(t)\|_{L^2(\mathbb{R}^{2d})}^2 + \|\nabla_u \rho(t)\|_{L^2(\mathbb{R}^{2d})}^2 \right) dt \le M$$

gives the existence of a solution ρ in $\mathcal{C}((0,T); L^2(\mathbb{R}^d)) \cap L^2((0,T); H^1_{x,u}(\mathbb{R}^{2d}))$ to the nonlinear Fokker Planck equation.

Main argument number two : iterative construction of the process

Theorem – (Zhang 2005)

Assume that S is continuous function of (t, x), strongly elliptic uniformly in time. Assume that $\nabla_x S(t, \cdot) \in L^{(2d+1)}_{\text{loc}}(\mathbb{R}^d)$, uniformly with respect to $t \in [0, T]$, $b \in L^{(2d+1)}_{\text{loc}}(\mathbb{R}^+ \times \mathbb{R}^d)$. Then there exists a unique strong solution up to the explosion time for equation

 $dX_t = S(t, X_t)dW_t.$

(In our case, S is will be also bounded so, there is no explosion). Set $(Y_t^0, 0 \le t \le T) = Y_0$, and, for $n \ge 1$, given $(Y_t^n; t \ge 0)$ in $(\Omega, \mathcal{F}, \mathbb{P})$,

$$Y_t^{n+1} = Y_0 + \int_0^t \mathbb{E}_{\mathbb{P}}\left[\gamma(Y_s^n) \,|\, X_s\right] dW_s.$$

Given $\rho^n = \operatorname{Law}(Y^n) \in \mathcal{C}((0,T); L^2(\mathbb{R}^{2d})) \cap L^2((0,T); H^1_{x,u}(\mathbb{R}^{2d}))$, we can prove that $\Gamma[x; \rho^n] = \mathbb{E}_{\mathbb{P}}\left[\gamma(Y^n_t) \mid X_t = x\right] \in L^{(2d+1)}_{\operatorname{loc}} \text{ if } \int_{\mathbb{R}^d} \rho_0(x, u) du > 0$

$$\begin{split} \mathbb{E}_{\mathbb{P}}\left[\max_{t\in[0,T]}|Y_{t}^{n+1}-Y_{t}^{n}|^{2}\right] &\leq T\int_{0}^{T}\mathbb{E}_{\mathbb{P}}\left[|\mathbb{E}_{\mathbb{P}}\left[\gamma(Y_{s}^{n})\,|\,X_{s}\right]-\mathbb{E}_{\mathbb{P}}\left[\gamma(Y_{s}^{n-1})\,|\,X_{s}\right]|^{2}\right]\,ds\\ &\leq \|\gamma\|_{Lip}^{2}\int_{0}^{T}\mathbb{E}_{\mathbb{P}}\left[\mathbb{E}_{\mathbb{P}}\left[|Y_{s}^{n}-Y_{s}^{n-1}|^{2}\,|\,X_{s}\right]\right]\,ds \end{split}$$

And what when σ could degenerate ?

Strategy one

$$\begin{cases} X_t = X_0 + \int_0^t U_s ds + \varepsilon B_t \\ Y_t = Y_0 + \int_0^t \mathbb{E}_{\mathbb{P}} \left[\ell(Y_s) \mid X_s \right] ds + \int_0^t \mathbb{E}_{\mathbb{P}} \left[\gamma(Y_s) \mid X_s \right] dW_s, \end{cases}$$

Strategy two

$$\begin{cases} X_t = X_0 + \int_0^t U_s ds \\ Y_t = Y_0 + \int_0^t \Lambda_{\varepsilon}[X_s; \rho_s] ds + \int_0^t \Gamma_{\varepsilon}[X_s; \rho_s] dW_s \end{cases}$$

+ use recent advances on the flow regularity of McKean SDE's to get the regularity of ρ ? [Crisan, McMurray 2017]

Toy model number two

The moderated local McKean SDE :

$$X_t = X_0 + \int_0^t \sigma(p(s, X_s)) dW_s, \quad 0 \le t \le T$$

 $p \in C_b^{1,2}([0,T] \times \mathbb{R}^d)$ is such that the law of X_t is p(t,x)dx.

Hypotheses :

- σ Lipschitz, C^3 mapping on $\mathbb R$
- Strong ellipticity $\forall x \in \mathbb{R}^d, \forall y \in \mathbb{R}, x^* \sigma(y) x \ge m_\sigma |x|^2$.
- p_0 in the Hölder space $H^{2+\alpha}$ with $0 < \alpha < 1$.
- non negativity for the diffusion matrix leading the Fokker-Planck PDE written on divergence form :

$$\forall x \in \mathbb{R}^{d}, \forall y \in \mathbb{R}, x^{*} \left((\sigma \sigma^{*})'(y)y + (\sigma \sigma^{*})(y) \right) x \ge 0.$$

is used to obtain uniqueness of the Fokker-Planck equation.

Strong ellipticity on the leading matrix

there exists $m_{\text{div}} > 0, \ \forall x \in \mathbb{R}^d, \forall y \in \mathbb{R}, x^* \left((\sigma \sigma^*)'(y)y + (\sigma \sigma^*)(y) \right) x \ge m_{\text{div}} |x|^2.$

Theorem – (Jourdain Méléard 98)

The McKean Vlasov Fokker-Planck equation has a solution in $H^{1+\frac{\alpha}{2},2+\alpha}$, and the nonlinear SDE admits a unique strong solution.

Toy model number two

The moderated local McKean SDE :

$$X_t = X_0 + \int_0^t \sigma(p(s, X_s)) dW_s, \quad 0 \le t \le T$$

 $p \in C_b^{1,2}([0,T] \times \mathbb{R}^d)$ is such that the law of X_t is p(t,x)dx.

Hypotheses :

- σ Lipschitz, C^3 mapping on \mathbb{R}
- Strong ellipticity $\forall x \in \mathbb{R}^d, \forall y \in \mathbb{R}, x^* \sigma(y) x \ge m_{\sigma} |x|^2$.
- p_0 in the Hölder space $H^{2+\alpha}$ with $0 < \alpha < 1$.
- non negativity for the diffusion matrix leading the Fokker-Planck PDE written on divergence form :

 $\forall x \in \mathbb{R}^{d}, \forall y \in \mathbb{R}, x^{*} \left((\sigma \sigma^{*})'(y)y + (\sigma \sigma^{*})(y) \right) x \ge 0.$

is used to obtain uniqueness of the Fokker-Planck equation.

Strong ellipticity on the leading matrix

there exists $m_{\text{div}} > 0, \ \forall x \in \mathbb{R}^d, \forall y \in \mathbb{R}, x^* \left((\sigma \sigma^*)'(y)y + (\sigma \sigma^*)(y) \right) x \ge m_{\text{div}} |x|^2.$

Theorem – (Jourdain Méléard 98)

The McKean Vlasov Fokker-Planck equation has a solution in $H^{1+\frac{\alpha}{2},2+\alpha}$, and the nonlinear SDE admits a unique strong solution.

Toy model number two

The moderated local McKean SDE revisited : d = 1

$$X_t = X_0 + \int_0^t \sigma(p(s, X_s)) dW_s, \quad 0 \le t \le T$$
$$p \in L^2([0, T]; L^2(\mathbb{R})) \text{ is such that the law of } X_t \text{ is } p(t, x) dx.$$

Hypotheses :

Theorem –(B. Jabir preprint)

Under the above hypotheses, there exist a solution in law to the above SDE.

Main argument number one : PDE analysis of the smoothed FK equation We denote $\sigma_{\varepsilon}^2(p) := \sigma^2(p) + \varepsilon$, $\forall p \in \mathbb{R}$. that maintains the strict positivity hypothesis on $\sigma_{\varepsilon}^2 : (\sigma_{\varepsilon}^2(p)p)' = (\sigma^2(p))' + \varepsilon$, $\forall u \in \mathbb{R}$.

$$\frac{\partial u^{\varepsilon}}{\partial t} - \frac{1}{2} \Delta_x (\sigma_{\varepsilon}^2 (u^{\varepsilon}) u^{\varepsilon}) = 0$$

$$u_0 \quad \text{given in } L^2 \tag{1}$$

Lemma

Under the previous hypotheses equation (1) admits a unique solution in $L^2([0,T]; H^1(\mathbb{R}))$ satisfying the energy inequality

$$\sup_{t\in[0,T]} \|u(t)\|_{L^{2}(\mathbb{R})}^{2} + \varepsilon \int_{0}^{T} \|\partial_{x}u(t)\|_{L^{2}(\mathbb{R})}^{2} dt \leq \|u_{0}\|_{L^{2}(\mathbb{R})}^{2}$$
$$\sup_{\varepsilon} \left\|\frac{\partial}{\partial x} \left(\sigma_{\varepsilon}^{2}(u^{\varepsilon})u^{\varepsilon}\right)\right\|_{L^{2}([0,T]\times\mathbb{R})} < +\infty.$$

 $(u^{\varepsilon},\varepsilon)$ is a Cauchy sequence in $L^2((0,T)\times\mathbb{R}).$

We have also the uniqueness of the solution of the limit equation in $L^2((0,T) \times \mathbb{R}))$ such that $(\sigma_{\varepsilon}^2(u^0)u^0)$ is in $L^2([0,T]; H^1(\mathbb{R}))$.

Proof : mainly adapted from Vasquez 06 book on porous media equation (Chapter 5).

Main argument number two : analysis of the smoothed SDE

Step 1) From u^{ε} solution in $L^2([0,T]; H^1(\mathbb{R}))$ of the smoothed FP equation, we construct (by mean of smoothing and martingale problem) a weak solution to

$$X_t^{\varepsilon} = X_0 + \int_0^t \sqrt{\sigma_{\varepsilon}^2(u^{\varepsilon}(s, X_s^{\varepsilon}))} dW_s$$

Main argument number two : analysis of the smoothed SDE

Step 1) From u^{ε} solution in $L^2([0,T]; H^1(\mathbb{R}))$ of the smoothed FP equation, we construct (by mean of smoothing and martingale problem) a weak solution to

$$X_t^{\varepsilon} = X_0 + \int_0^t \sqrt{\sigma_{\varepsilon}^2(u^{\varepsilon}(s, X_s^{\varepsilon}))} dW_s$$

 $\begin{array}{l} \text{Step 2)} \sqrt{2\sigma_{\varepsilon}^2(u^{\varepsilon}(t,x))} > \varepsilon \text{ for all } (t,x) \in [0,T] \times \mathbb{R}. \ \text{Law}(X_t^{\varepsilon}) \text{ admits a density } h^{\varepsilon} \text{ satisfying } \\ \end{array} \end{array}$

$$h^{\varepsilon}(t,x) = G_t^{\gamma}(u_0) + \frac{1}{2} \int_0^t \Delta_x G_{t-s}^{\gamma}(\sigma_{\varepsilon}^2(u^{\varepsilon}) - \gamma^2) h_s^{\varepsilon})(x) ds$$

for G_t^{γ} the Gaussian semigroup with variance $\gamma^2 t$. For a good choice of γ , this allows to prove that h^{ε} is in L^2 , so $h^{\varepsilon} = u^{\varepsilon}$, and we have obtain a unique weak solution to the smoothed nonlinear SDE.

Main argument number two : analysis of the smoothed SDE

Step 1) From u^{ε} solution in $L^2([0,T]; H^1(\mathbb{R}))$ of the smoothed FP equation, we construct (by mean of smoothing and martingale problem) a weak solution to

$$X_t^{\varepsilon} = X_0 + \int_0^t \sqrt{\sigma_{\varepsilon}^2(u^{\varepsilon}(s, X_s^{\varepsilon}))} dW_s$$

 $\begin{array}{l} \text{Step 2)} \sqrt{2\sigma_{\varepsilon}^2(u^{\varepsilon}(t,x))} > \varepsilon \text{ for all } (t,x) \in [0,T] \times \mathbb{R}. \ \text{Law}(X_t^{\varepsilon}) \text{ admits a density } h^{\varepsilon} \text{ satisfying } \\ \end{array} \end{array}$

$$h^{\varepsilon}(t,x) = G_t^{\gamma}(u_0) + \frac{1}{2} \int_0^t \Delta_x G_{t-s}^{\gamma}(\sigma_{\varepsilon}^2(u^{\varepsilon}) - \gamma^2) h_s^{\varepsilon})(x) ds$$

for G_t^{γ} the Gaussian semigroup with variance $\gamma^2 t$. For a good choice of γ , this allows to prove that h^{ε} is in L^2 , so $h^{\varepsilon} = u^{\varepsilon}$, and we have obtain a unique weak solution to the smoothed nonlinear SDE.

Step 3) Tightness of the sequence $(X^{\varepsilon}, \varepsilon)$ and convergence in L^2 of the densities. Identification of the limit with rather classical arguments

This is joint work with Jean Francois Jabir (University of Valpareiso)

Bibliography

B., Fontbona, Jabin, Jabir. Local existence of analytical solutions to an incompressible Lagrangian stochastic model in a periodic domain.CoPDE, 2013.

B. and Jabir. On confined McKean Langevin processes satisfying the mean no-permeability boundary condition. SPA 2011

B. and Jabir. Lagrangian stochastic models with specular boundary condition. JFA 2015

B., J. Espina, etall. Modeling the wind circulation around mills with a Lagrangian stochastic approach. SMAI-JCM 2016.

B. and Jabir. Some McKean models with non smooth nonlinear diffusion coefficients Preprint.

References

Crisan and McMurray Smoothing properties of McKean-Vlasov SDEs 2017

Durbin and Speziale Realizability of second-moment closure via stochastic analysis. J. Fluid Mech. 1994

Guyon and Henry-Labordere The Smile Calibration Problem Solved 2011.

Jourdain, and Méléard. Propagation of chaos and fluctuations for a moderate model with smooth initial data, Ann. Inst. H. P Probab. Statist., 1998.

Jourdain, Zhou. Existence of a calibrated regime switching local volatility model and new fake Brownian motions. Preprint 2016.

Pope. Lagrangian pdf methods for turbulent flows Annu. Rev. Fluid Mech. 1994

Minier and Pozorski Wall-boundary conditions in probability density function methods and application to a turbulent channel flow Physics of Fluids, 1999.

Vasquez, J. L. The Porous Medium Equation, Oxford University Publications, 2006.

Thank you for your attention