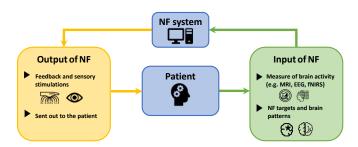
PEPERONI: Portable and Personalized Neurofeedback for Stroke Rehabilitation

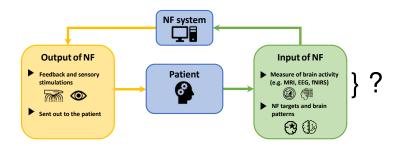
Stroke

Pierre Maurel

PU, Univ.Rennes

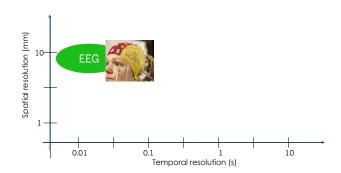

18/11/24

Neurofeedback 0000


- → consists in presenting a subject with a stimulus directly related to his/her current brain activity
 - can be used to teach subjects to regulate their own brain functions

Neurofeedback

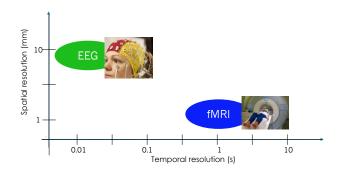
0000


- \rightarrow consists in presenting a subject with a stimulus directly related to his/her current brain activity
 - can be used to teach subjects to regulate their own brain functions

0000

Neurofeedback: How to measure brain activity?

 Electroencephalography (EEG) → portable, cheap, main modality used by clinical practitioners, but low spatial resolution

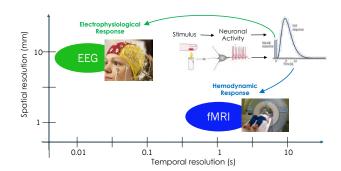


P.Maurel Peperoni 3/20

Neurofeedback: How to measure brain activity?

Stroke

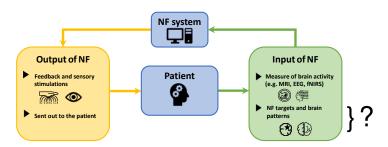
- Electroencephalography (EEG) → portable, cheap, main modality used by clinical practitioners, but low spatial resolution
- functional MRI → high spatial resolution & possibility to image deep brain structures, but low temporal resolution



P.Maurel Peperoni 3/20

Neurofeedback: How to measure brain activity?

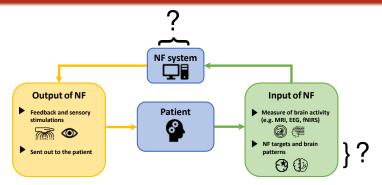
- Electroencephalography (EEG) → portable, cheap, main modality used by clinical practitioners, but low spatial resolution
- functional MRI → high spatial resolution & possibility to image deep brain structures, but low temporal resolution
- Capture two different (but related) information


Stroke

P.Maurel Peperoni 3/20

0000

Neurofeedback: How to create the stimulus?

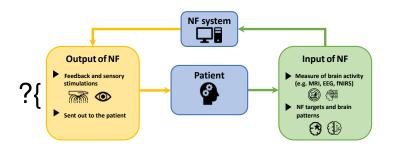

- Which "target"? depends on the objective, and the instructions given.
 - Brain activity in the motor area

 "move your left hand"

 - Amyodala activity ↔ "Think about something that makes you happy"

0000

Neurofeedback: How to create the stimulus?



- Which "target" ? depends on the objective, and the instructions given.
 - Brain activity in the motor area ↔ "move your left hand"
 - Alpha waves

 "close your eves and relax"
 - Amvodala activity ↔ "Think about something that makes you happy"
- How to compute neurofeedback scores? Real-time processing
 - several options depending on the target
 - continuous? discrete?

P.Maurel Peperoni

Neurofeedback: What type of feedback?

- Classically → visual feedback, gauge-like
- More sophisticated visual feedback
- Auditory feedback
- Tactile feedback

P.Maurel Peperoni 5/20

Stroke Rehabilitation

Leading cause of adults acquired disability

(Lecoffre et al., 2017)

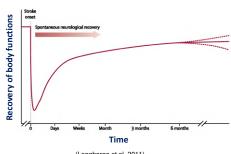
ullet 60% of stroke survivors o upper-limb paresis, without useful grip, major impact on independence

(Nakayama et al., 1994)

Stroke Rehabilitation

Leading cause of adults acquired disability

Stroke


(Lecoffre et al., 2017)

 60% of stroke survivors → upper-limb paresis, without useful grip, major impact on independence

(Nakayama et al., 1994)

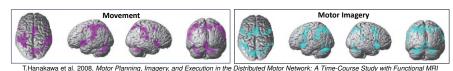
Recovery limited after one year

(S.Butet) (Langhorne et al, 2011)

P.Maurel Peperoni 6/20

Neurofeedback for Stroke Rehabilitation

Physiological recovery mechanism in brain motor areas after stroke


ightarrow Neurofeedback to guide brain plasticity by rewarding a recovery of ipsilesional activation

Neurofeedback for Stroke Rehabilitation

• Physiological recovery mechanism in brain motor areas after stroke

- ightarrow Neurofeedback to guide brain plasticity by rewarding a recovery of ipsilesional activation
 - Motor imagery (recommended post-stroke, similar brain activity) (Monteiro et al. 2021)

P.Maurel Peperoni 7/20


Context: an EEG-fMRI NF Platform

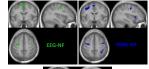
→ How to Build a Hybrid NF Platform Combining EEG and fMRI, Mano et al., 2017

 Second system worldwide to perform bimodal EEG-fMRI NF

Neurofeedback

objective : take advantage of the respective qualities of each modality

Context: an EEG-fMRI NF Platform


→ How to Build a Hybrid NF Platform Combining EEG and fMRI, Mano et al., 2017

- Second system worldwide to perform bimodal EEG-fMRI NF
- objective: take advantage of the respective qualities of each modality

Unimodal vs Bimodal EEG-fMRI NF of a Motor Imagery Task, Perronnet et al., 2017

- First studies on healthy subjects
- Simultaneous EEG-fMRI-NF provides stronger, bigger and more widespread activations

Unimodal NF

Bimodal NE

P.Maurel Peperoni 8/20

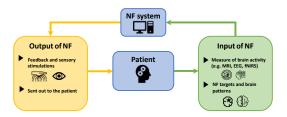
Randomized Controlled Trial, Chronic Stroke Patients

30 chronic stroke patients \rightarrow 14 sessions over 5 weeks

- Neurofeedback group → 5 bimodal EEG-fMRI-NF, 9 EEG-NF
- lacktriangledown Motor Imagery group ightarrow 14 motor imagery sessions, without NF

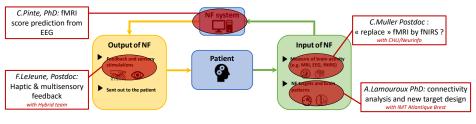
Results on Fugl-Meyer Motor Score:

- NF group \rightarrow significant improvements, MI group \rightarrow no significant gains
- 8/15 participants in the NF group showed clinically significant recovery (increase ≥ 4 points), 3/15 in the MI group


P.Maurel Peperoni 9/20

PEPERONI

🕍 Portable and Personalized Neurofeedback for Stroke Rehabilitation 🎇


PEPERONI

Neurofeedback

Portable and Personalized Neurofeedback for Stroke Rehabilitation

Consortium

Empenn U1228 (Inria/Inserm/CNRS/UR1)

- Elise Bannier, IR CHU
- Julie Coloigner, CR CNRS
- Isabelle Corouge, IR Univ.Rennes
- Pierre Maurel, PR Univ.Rennes
- Camille Muller, PostDoc

- HYBRID Team (Inria/IRISA)
 - Anatole Lécuyer, DR Inria
 - Marc Macé, CR CNRS
 - Léa Pillette, CR CNRS
 - François Le Jeune, PostDoc
 - Thomas Prampart, IR Inria

- BRAin Team (Lab-STICC UMR CNRS / IMT Atlantique)
 - Nicolas Farrugia, MCF IMT
 - Giulia Lioi, MCF IMT
 - Alix Lamouroux, PhD
- Rehabilitation Dept. CHU Rennes
 - Isabelle Bonan, PU-PH Simon Butet, MD

PEPERONI: more Personalized, WP 1.1

Goal 1 → "Personalized" (= adapted to patient profile)

PhD student

WP 1.1 Brain Connectivity & Neurofeedback Personalize NF marker with connectivity features

PEPERONI: more Personalized, WP 1.1

Goal 1 → "Personalized" (= adapted to patient profile)

Alix Lamouroux PhD student

WP 1.1 Brain Connectivity & Neurofeedback Personalize NF marker with connectivity features

Objectives

- → How to optimally study brain connectivity in stroke patients?
- → Investigate the impact of neurofeedback on brain connectivity
- → Propose new neurofeedback targets based on connectivity

WP 1.1 \rightarrow Alix Lamouroux

fMRI Preprocessing - Stroke

Provide a tool to the community to process and analyse stroke data

- Help the community converge on preprocessing pipeline for stroke data
- Software under review in : Journal of Open Source Software

Converge on an "ideal" pipeline for stroke

Paper submitted to Imaging Neuroscience:
 "Benchmarking preprocessing pipelines for rs-fMRI data in stroke patients: the impact on functional connectivity and behavioral prediction"

WP 1.1 \rightarrow Alix Lamouroux

Impact of Neurofeedback on connectivity

→ Ongoing work on RCT data (chronic stroke patients)

Analysis of connectivity changes due to intervention - Preliminary results

- Significant connectivity changes found in NF group in two components (Motor and DMN)
- No significant changes in Motor Imagery group

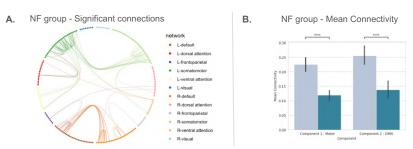


Figure 1: A. Significant differences Pre vs Post in NF group found with NBS (Network Based Statistics). B. Mean connectivity in the two components.

P.Maurel Peperoni 13/20

PEPERONI: more Personalized, WP 1.2

Goal 1 → "Personalized" (= adapted to patient profile)

François Le Jeune Postdoc

WP 2.2 Multisensory neurofeedback

Adapt the feedback to the patient and the task

PEPERONI: more Personalized, WP 1.2

Goal 1 → "Personalized" (= adapted to patient profile)

WP 2.2 Multisensory neurofeedback

Adapt the feedback to the patient and the task

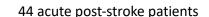
Postdoc

Objectives

- → Current systems: mostly visual feedback.
- → Adapted feedback: reduce the time required to learn to control the system and their brain activity, increase chance of success
- → Adaptation depending on: personal characteristics of users, evolution of their results

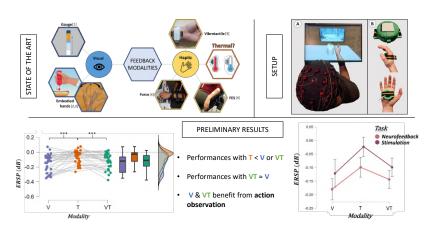
P.Maurel Peperoni 14/20

WP 1.2 → François Le Jeune


Visuohaptic feedback for acute stroke patients

→ YUWIN : earlY Upper Limb Rehabilitation WIth EEG-Neurofeedback After Stroke

Investigate visuohaptic neurofeedback in early stage sensorimotor rehabilitation on clinical recovery scores and neuromodulation



9 patients have completed the protocol so far

WP 1.2 \rightarrow François Le Jeune

Insights on Thermal Neurofeedback

→ new haptic feedback based on thermal variation

Graz BCI Conference 2024, CORTICO 2024, rtFin 2024

P.Maurel Peperoni 16/20

Goal 2 → "Portable" (= less reliance on MRI)

PhD student
(not funded by CominLabs)

WP2.1 Improving portability of bi-modal NF predicting fMRI NF scores from EEG signals

Goal 2 → "Portable" (= less reliance on MRI)

(not funded by CominLabs)

WP2.1 Improving portability of bi-modal NF predicting fMRI NF scores from EEG signals

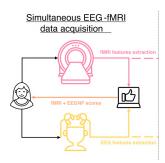


Image : C.Pinte

P.Maurel Peperoni 17/20

Goal 2 → "Portable" (= less reliance on MRI)

(not funded by CominLabs)

Neurofeedback

WP2.1 Improving portability of bi-modal NF predicting fMRI NF scores from EEG signals

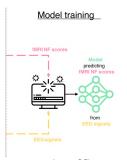


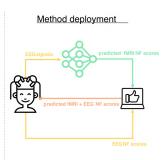
Image : C.Pinte

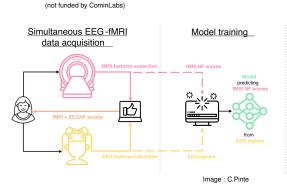
P.Maurel Peperoni 17/20

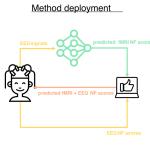
Goal 2 → "Portable" (= less reliance on MRI)

Caroline Pinte
PhD student
(not funded by CominLabs)

WP2.1 Improving portability of bi-modal NF predicting fMRI NF scores from EEG signals




Image: C.Pinte


Goal 2 → "Portable" (= less reliance on MRI)

Neurofeedback

WP2.1 Improving portability of bi-modal NF predicting fMRI NF scores from EEG signals

P.Maurel Peperoni 17/20

Goal 2 → "Portable" (= less reliance on MRI)

WP2.2 EEG-fNIRS neurofeedback "replace" fMRI by fNIRS?

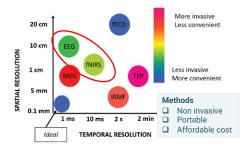
Goal 2 → "Portable" (= less reliance on MRI)

Postdoc

WP2.2 EEG-fNIRS neurofeedback "replace" fMRI by fNIRS?

Objectives

→ fNIRS : Functional near-infrared spectroscopy


- → fNIRS and fMRI measure the hemodynamic response
- → Propose a new EEG-fNIRS NF acquisition protocol
- → Validation on healty subjects
- → Design a proof-of-concept study on stroke patients

WP 2.2 → Camille Muller

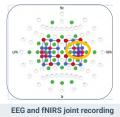
EEG-fNIRS neurofeedback

ADVANTAGES OF FFG AND ENIRS COMBINATION

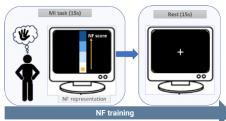
- Provide complementary information (Hong et al., 2018)
- Better spatio-temporal mapping
- No signal contamination (Fazli et al., 2012)
- Possibility of an ecological use => improving the clinical application (Buccino et al., 2016)
- Existing combined applications other than NF

Combination **feasible** and **promising** for optimizing conventional motor training methods and clinical rehabilitation (Wang et al., 2023)

<u>OBJECTIVE:</u> Evaluate the benefits of multimodal EEG-fNIRS neurofeedback for motor imagery


P.Maurel Peperoni 19/20

WP 2.2 → Camille Muller


EEG-fNIRS neurofeedback

Stroke

- → Hybrid acquisition system & real time processing unit (with T.Prampart)
- → Ongoing study on healthy subjects

- NF above right primary motor cortex

- 3 conditions in randomized order
 - * EEG-based NF / fNIRS-based NF / EEG + fNIRS based NF

Preliminary results:

- EEG-fNIRS-NF platform dealing with real-time signals with a dedicated software (OpenViBE)
- NF controlled in all conditions
- Feeling of NF control in favor of combined feedback

Ongoing work:

- 7/30 subjects included (healthy, right-handed)
- Publication of the method
- Analyze the global brain activity related to the NF session in function of the neuroimaging modality

rtFin 2024

P.Maurel Peperoni 20/20

Thank you for your attention