SYMPOSIUM - Multi-modal neurofeedback methods for post-stroke rehabilitation

Evaluation of multimodal EEG-fNIRS neurofeedback for motor imagery

Camille Muller¹, Thomas Prampart¹, Elise Bannier^{1,2}, Isabelle Corouge¹, Pierre Maurel¹

¹Univ. Rennes, Inria, CNRS, IRISA, Rennes, France ²CHU Rennes, Department of Radiology, Rennes, France.

camille.muller@inria.fr

Introduction	Methods	Results	Discussion
--------------	---------	---------	------------

Multimodal neurofeedback for post-stroke rehabilitation

Context: Post-stroke upper-limb (UL) rehabilitation

Neuroplasticity stimulation Rehabilitation

Introduction	Methods	Results	Discussion
--------------	---------	---------	------------

Multimodal neurofeedback for post-stroke rehabilitation

Context: Post-stroke upper-limb (UL) rehabilitation

Neuroplasticity stimulation Rehabilitation

<u>Rehabilitation:</u> Counteract ipsilesional hemisphere lack of activation (Floël, 2014; Teo et al., 2016)

Neurofeedback (NF) + Motor imagery* (MI)

- Targeting the lesioned area (Jackson et al., 2003) => Activation of motor areas (Hanakawa, 2008)
- **Motor recovery** (*Le Franc et al., 2022*; Bai et al., 2020)

Introduction	Methods	Results	Discussion
--------------	---------	---------	------------

Multimodal neurofeedback for post-stroke rehabilitation

Context: Post-stroke upper-limb (UL) rehabilitation

Neuroplasticity stimulation

Rehabilitation

<u>Rehabilitation:</u> Counteract ipsilesional hemisphere lack of activation (Floël, 2014; Teo et al., 2016)

Neurofeedback (NF) + Motor imagery* (MI)

- Targeting the lesioned area (Jackson et al., 2003) => Activation of motor areas (Hanakawa, 2008)
- The motor recovery (Le Franc et al., 2022; Bai et al., 2020)

<u>Optimising NF for MI:</u> Neuroimaging methods feasible + as accurate as possible

Multimodal EEG + fNIRS

- Practical for rehabilitation
- Information of brain related activity in post-stroke (Muller et al., 2024; Delorme et al., 2019; Yang et al., 2019)

*Motor imagery (MI) - mental representation of an action without engaging its actual execution (Jeannerod, 1999)

Introduction	Methods	Results	> Discussion
--------------	---------	---------	--------------

Can multimodal neurofeedback improve its efficiency?

MULTIMODAL IMAGERY FOR NF?

- May enhance brain rehabilitation techniques
- Ciccarelli et al., 2023

fMRI + EEG

- Complementary bio-signals
 - Electric brain activity and BOLD
 - Potential therapeutic effects

Limitations of fMRI: position, contraindications, cost, movement, ...

Introduction	Methods	Results	Discussion
--------------	---------	---------	------------

Can multimodal neurofeedback improve its efficiency?

MULTIMODAL IMAGERY FOR NF?

- May enhance brain rehabilitation techniques
- Ciccarelli et al., 2023 •

fMRI + EEG

- Complementary bio-signals
 - Electric brain activity and BOLD
 - Potential therapeutic effects

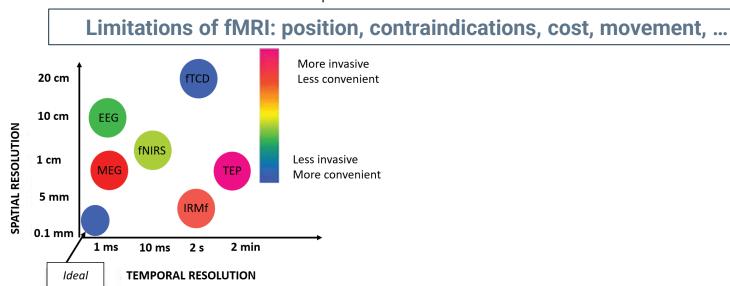


Figure adapted from Parasuraman et Caggiano, 2005 ; Mandrick 2013 ; Chiarelli et al., 2018

Introduction	Methods	Results	Discussion
--------------	---------	---------	------------

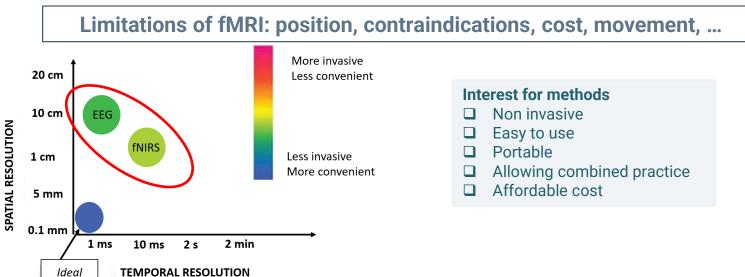
Can multimodal neurofeedback improve its efficiency?

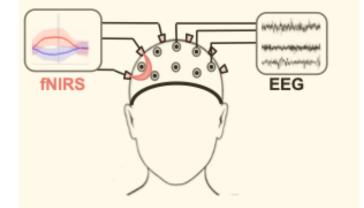
MULTIMODAL IMAGERY FOR NF?

- May enhance brain rehabilitation techniques
- Ciccarelli et al., 2023

fMRI + EEG

- Complementary bio-signals
 - Electric brain activity and BOLD
 - Potential therapeutic effects




Figure adapted from Parasuraman et Caggiano, 2005 ; Mandrick 2013 ; Chiarelli et al., 2018

Introduction	Methods	$\boldsymbol{\boldsymbol{\succ}}$	Results	Discussion

Multimodal neurofeedback with fNIRS-EEG

ADVANTAGES OF EEG AND FNIRS COMBINATION

- Provide complementary information (Hong et al., 2018)
- Better spatio-temporal mapping
- No signal contamination
- Possibility of an ecological use => improving the clinical application
- Already often combined applications other than NF

Combination feasible and promising for optimizing conventional motor training methods and clinical rehabilitation (*Wang et al., 2023*)

To our knowledge, none study has associated fNIRS + EEG for NF-MI for poststroke UL motor rehabilitation

Introduction		Methods	\rightarrow	Results	\rightarrow	Discussion
Evaluate neurof						
	EEC	www.www				

Introduction	Method	Results	$\boldsymbol{\succ}$	Discussion

Population

Objective : evaluate the effects of multimodal NF with EEG and fNIRS

+ 18 yrs.

-

-

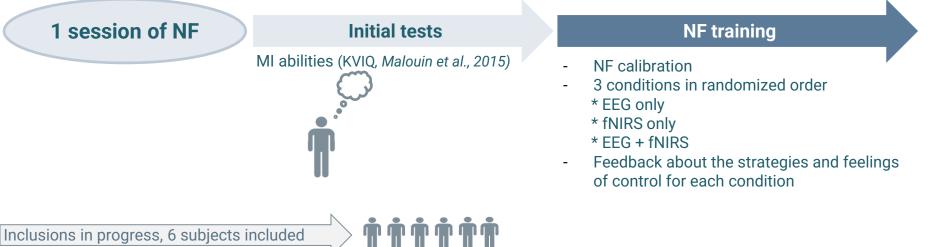
-

- Healthy subjects (N = 30)
- Right-handed
- No neurological disease
- No UL orthopedic issue -

Introduction	$\boldsymbol{\succ}$	Method	Results	Discussion

Population

Objective : evaluate the effects of multimodal NF with EEG and fNIRS


Healthy subjects (N = 30)

+ 18 yrs.

-

- Right-handed
- No neurological disease
- No UL orthopedic issue

Introduction	Method	Results	Discussion

32 channels

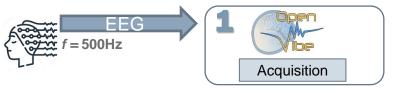
EEG and fNIRS combined implementation

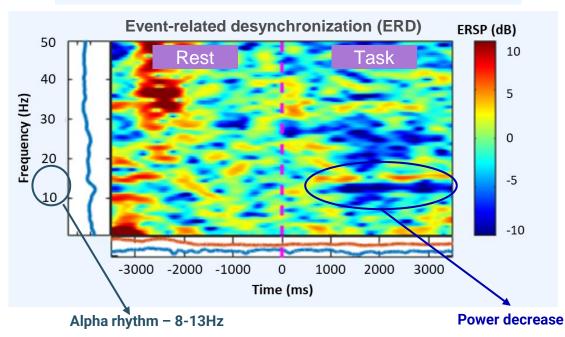
EEG (ActiChamp, Brain Products)

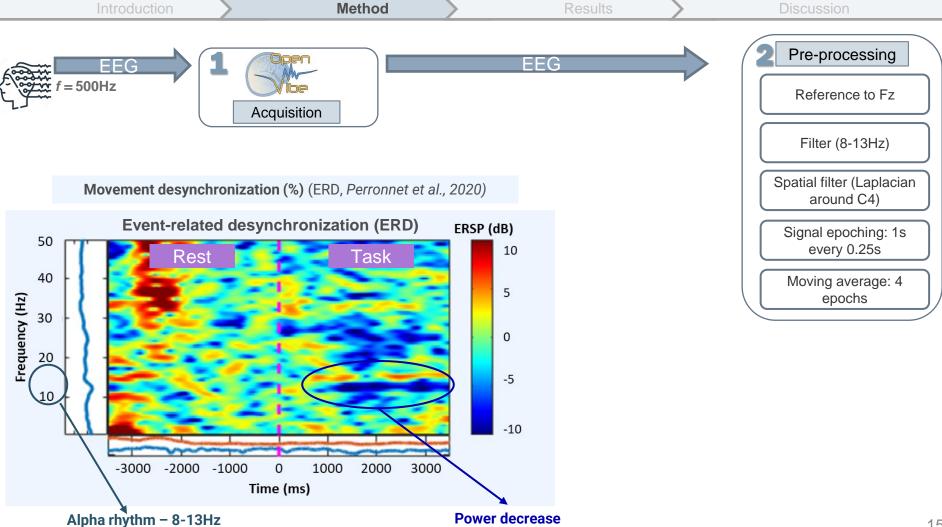
fNIRS (NIRScout XP, NIRx)

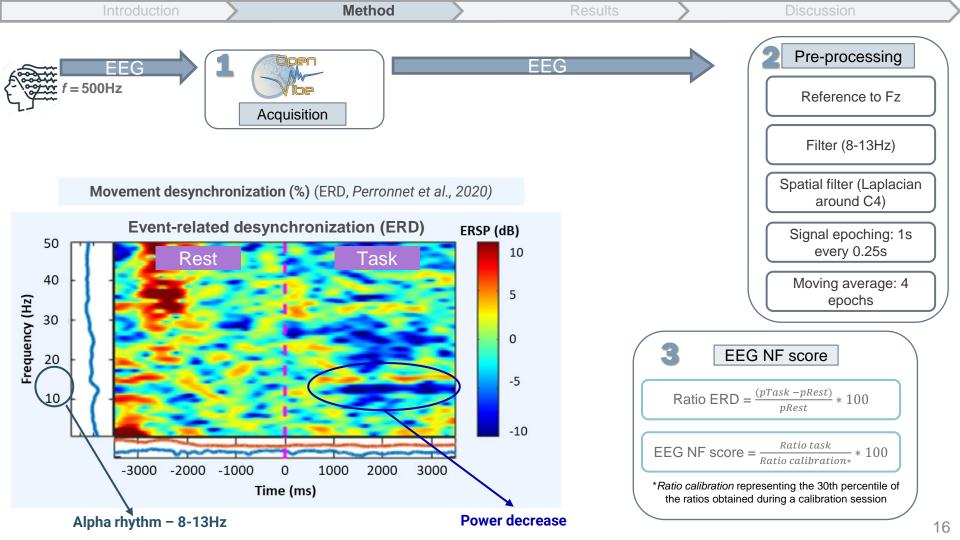
16x16 sources x detectors (+8 short-channels)

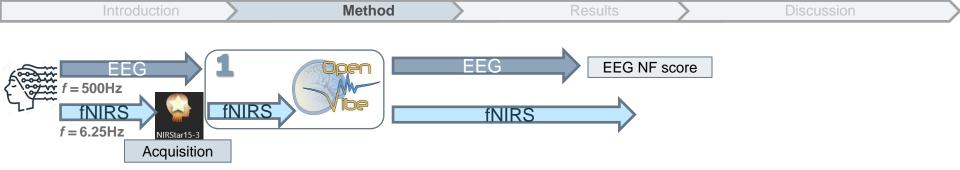
Implementation complexity


- ✓ Record the same brain areas (NF of right M1)
- ✓ Install all 72 sensors
- ✓ Two different sampling rates (500 vs 6.25Hz)
- \checkmark Extract the brain activity with the same software

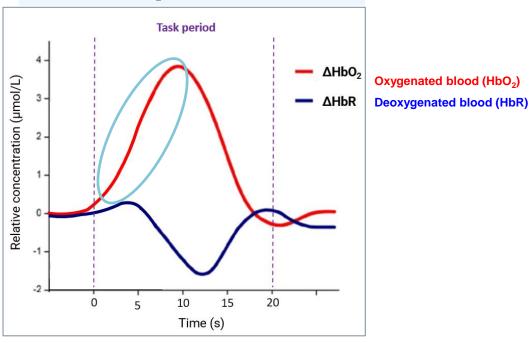

Introduction	Method		Results		Discussion
EEG and fNIRS comb	EEG (ActiChamp, Brain Products)	tion	E		montage
	fNIRS (NIRScout XP, NIRx)			0 0000	
	 32 EEG channels fNIRS 16 sources fNIRS 16 detectors fNIRS channels fNIRS short-channel 	ls	© LPA © ●		
Implementation complexity			0	000	
\checkmark Record the same brain are	eas (NF of right M1)		٢	0000	00000000
✓ Install all 72 sensors				0	0
✓ Two different sampling rate	ites (500 vs 6.25Hz)			0 (lz
\checkmark Extract the brain activity v	vith the same software		+ NF	F channels (ab	ove C4, right M1*)
				*M1: prir	mary motor cortex

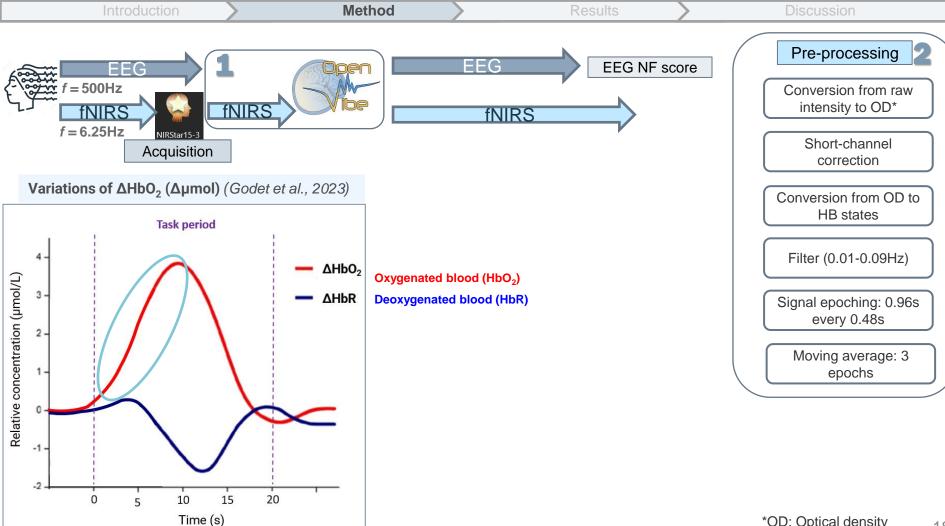


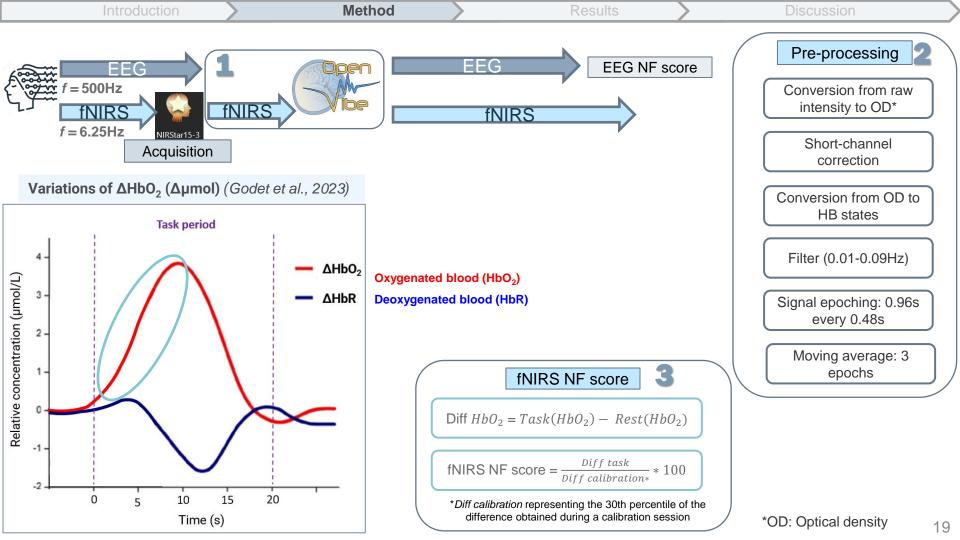

Introduction	Method	Results	Discussion	



Movement desynchronization (%) (ERD, Perronnet et al., 2020)

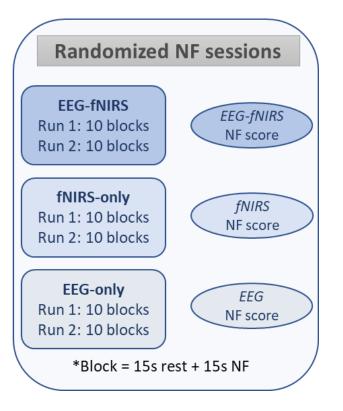


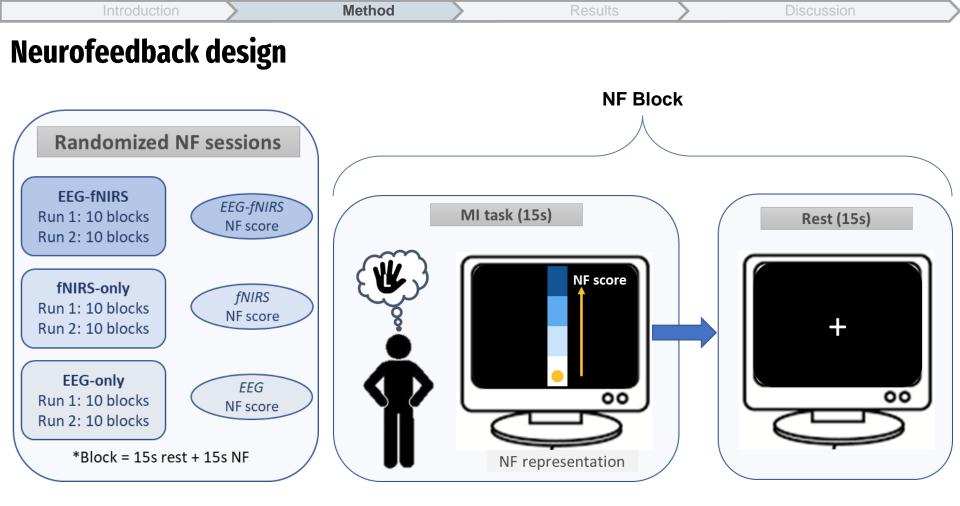




17

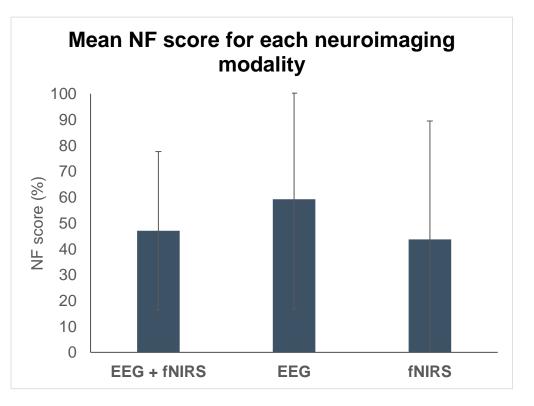
Variations of Δ HbO₂ (Δ µmol) (Godet et al., 2023)



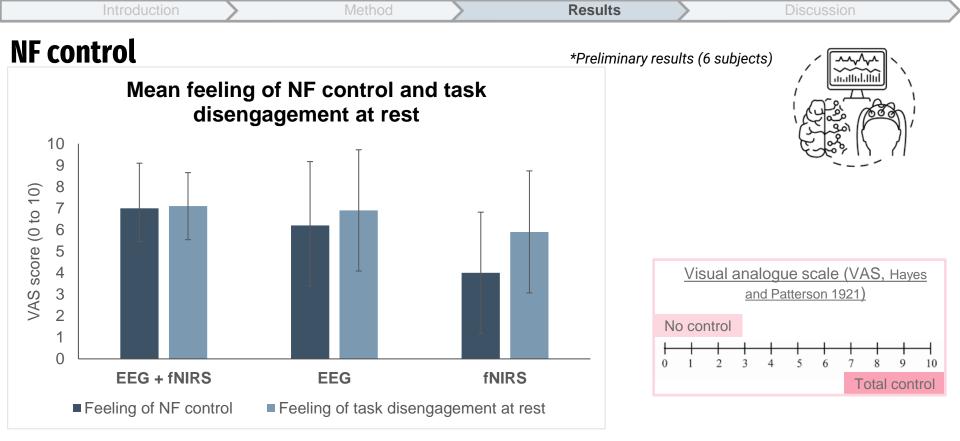


|--|

Neurofeedback design



Online brain activation


Gauge controlled in every condition for all participants*

*Preliminary results (6 subjects)

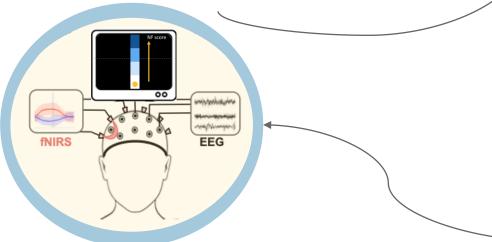
- EEG-NF score higher than two other conditions (fNIRS-alone and EEG-fNIRS)
- EEG-fNIRS-NF score higher than fNIRS-NF alone

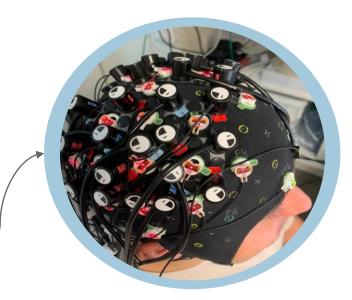
EEG + fNIRS NF condition:

• Feeling of control of the ball movement higher and feeling of ability to disengage from the MI task during rest periods higher

Multimodal NF with fNIRS and EEG

Feasability


- EEG-fNIRS-NF platform dealing with real-time signals with a dedicated software (OpenViBE)
- Joint recording of EEG and fNIRS of same brain regions (Yang et al., 2019; Fazli et al., 2016)
- Timing of installation and online quality of signals
- Successful NF in every condition for each subject (Buccino et al., 2016)

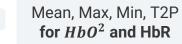


Multimodal NF with fNIRS and EEG

Feasability

- EEG-fNIRS-NF platform dealing with real-time signals with a dedicated software (OpenViBE)
- Joint recording of EEG and fNIRS of same brain regions (Yang et al., 2019; Fazli et al., 2016)
- Timing of installation and online quality of signals
- Successful NF in every condition for each subject (Buccino et al., 2016)

Benefits of the combination


- Preliminary results
- Feeling of NF control in favor of combined feedback
- Hypothesis : smoother feedback

Introduction	\rightarrow	Method	<u> </u>	Results	Discussion
Ongoing part					a 2010
Inclusion					
 Inclusion of the c Healthy subjects: 		ohort			

	Introduction		Method	<u> </u>	Results		Discussion
Ongoi	ng part						
Inclusio	on						
- Incl	usion of the c	omplete co	ohort				
- Hea	althy subjects:	6/30					·
		\langle				VIIV///	
	Nz phảo optodes on u to the 30 view					Wi	
							all the second
0		00	Offline analys	ies			
LPA 🖱 🌢		RPA		•	ain activity rela		NF session in
00		0			maging modal tivity (M1, SM1		A, left and right)
					· ·		

- Parameters extracted

fNIRS

EEG

Discussion

 \bigcirc

SYMPOSIUM - Multi-modal neurofeedback methods for post-stroke rehabilitation

Evaluation of multimodal EEG-fNIRS neurofeedback for motor imagery

Camille Muller¹, Thomas Prampart¹, Elise Bannier^{1,2}, Isabelle Corouge¹, Pierre Maurel¹

IRISA

¹Univ. Rennes, Inria, CNRS, IRISA, Rennes, France ²CHU Rennes, Department of Radiology, Rennes, France.

Inserm

camille.muller@inria.fr

CHU

