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I. INTRODUCTION

Optimization-based control is a common approach for con-
trolling many robotic systems, including legged robots [1],
[2]. Some work has been done to use optimization strategies
for exoskeleton control [3], for instance, to re-shape the
reference trajectory for an upper-limb exoskeleton that used
an impedance control method [4]. This abstract presents
a nonlinear programming-based optimization strategy that
solves simultaneously for the constrained exoskeleton state
and control trajectories that incorporate the user’s torque
inputs and gait intentions in a safe manner. To do so, the
user’s torque inputs and desired gait features (e.g., desired
gait speed [5]) must be estimated in advance. There are
many strategies for intent recognition [5], [6] and time-series
forecasting that could accomplish this task, including neural
network modeling, Gaussian process regression, and others
[7], [8]. These models can be trained by collecting torque
measurements at each exoskeleton joint or, in the absence
of torque sensors, based on disturbance observation [4].
This abstract establishes a trajectory optimization solution
for a robotic exoskeleton that incorporates the user’s torque
inputs and gait intentions, assumed to be estimated a priori.
The contribution is a proof of concept for using trajectory
optimization to solve for the robot actions that realize the
human’s desired gait speed, to coordinate with predicted
human torque input, and to assist wherever necessary such
that the system progresses safely through the normal phases
of gait.

II. METHODS

The exoskeleton model used for trajectory optimization is
based on the EksoGT by Ekso Bionics, which has two legs,
each with a powered hip and knee joint. Since the EksoGT
is a proprietary device, the exact inertial properties of each
segment have not been published. This work models the
exoskeleton as a five-link planar device with each segment
idealized as a thin rod. The overall mass of the exoskeleton
is 20.41 kg, and the lengths of each segment are adjustable
such that they match the human user. The total mass was
divided among the segments such that the trunk segment had
66.66% of the total mass, while each thigh and shank had
10% and 6.67%, respectively. The optimization was run with
and without additional human/exoskeleton forces and torque
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applied at the end of the lower leg segment, to represent the
addition or lack of a powered ankle joint.

Joint torque and joint angle trajectories were extracted for
one gait cycle of one subject walking at 1.2 m/s from [9].
The leg length for this subject was gleaned from the average
height of the right greater trochanter marker (1.06m). Based
on proportions in [10], this leg length corresponds with a
thigh length of 0.39 m and a lower leg length (including the
foot) of 0.53 m. The total mass of the subject was assumed
to be 66.1 kg, based on a colleague’s weight who had a
similar leg length. The center of mass (COM), mass, and
moment of inertia for each segment of the human body were
then calculated following the anthropometric relationships
reported in [10]. Finally, the human was assumed to be
rigidly attached to each exoskeleton segment with shared
degrees of freedom (DOFs) perfectly aligned such that com-
bined inertial parameters were calculated by adding masses,
calculating the new COM, and using the parallel axis theorem
to combine moments of inertia about the new COM. For
the combined human/exoskeleton model, the torso segment
represents the combined head, arms, and trunk.

Given these parameters of the human/exoskeleton model,
the general form of the optimal control problem is
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where decision variables include the state and exoskeleton
control trajectories, x(t) € R” and u(z) € R*, initial and
final times, #p and 7, and optimization variables p(r) that
include ground reaction forces and foot locations. Equation 1
includes the cost function, V(-), while Egs. 2, 3, and 4
represent the dynamics, path, and boundary constraints. The
human torque contributions are added as external torques in
the dynamics equation.
The cost function was configured to contain four terms,
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where the first term penalizes the difference in the amount
of time spent within each gait phase between the human
data and the optimized exoskeleton trajectory, organized by
vectors ty and tg, respectively. The second term penalizes
the difference between the human’s desired average forward
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speed (1.2 m/s in this case) and the optimized exoskeleton
average forward speed, vy and vg, respectively. Next, the
control torques u(¢) and the difference between the human
and exoskeleton joint angle trajectories, qg (¢) and qg(t), are
penalized at every time step.

Weights w,, w,, and w, were set at 10, 10°, and 103,
respectively, while w, was 107>, effectively prioritizing
matching the human trajectory despite increased exoskeleton
torques. The joint states were constrained for the safety of the
human as follows: —5° < 6 < 15° (to avoid overextending
the back, or non-normative trunk lean), —45° < g1 < 35°
(roughly the same range as the human data), —1° < g1, <
80° (to avoid hyperextending the knee), where clockwise is
positive. The joint torques were constrained to be less than
or equal to 300 Nm in magnitude to find solutions that are
reasonable for existing motor technology. The optimization
problem was solved for no human torque contribution, half
human torque contribution, and full human torque contribu-
tion for both the ankle and no-ankle configuration.

The NLP problem was formulated in MATLAB with the
aid of CasADi, an open-source tool for nonlinear optimiza-
tion and algorithmic differentiation [11]. CasADi employs
IPOPT, an Interior Point OPTimizer [12]. For this work, the
third-party HSL solver ma97 was used [13].

III. RESULTS AND DISCUSSION

IPOPT was able to solve for the exoskeleton trajectories
that best incorporated the human torque inputs while also
getting as close as possible to the user’s intended gait speed,
phase timing, and joint trajectories. The results for includ-
ing/excluding ankle contributions are shown in Fig. 1. For
the no-ankle condition, across all four joint angle trajectories
for the full human torque condition, the root mean squared
error (RMSE) was 7.77°, with a maximum error of 31°.
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Fig. 1. Optimal knee angle and torque trajectories for various torque
contributions by the human with w; = 10~ and both the no-ankle and
ankle configurations. Vertical dashed black lines demarcate the gait phases.

With the addition of ankle torque contributions, the solu-
tion was better able to match the human joint trajectories.
Across all four joints, the RMSE was 3.70°, with a maxi-
mum error of 13°. Since the optimization barely penalized
exoskeleton torques, the solution used large torques that often
reached the maximum of 300 Nm to better match the human
joint trajectories. The solution changed negligibly in response
to changing human torques. By increasing wy, the solutions
can be coerced to forego matching the human trajectories
in favor of reducing torque. While one might expect that
increasing the human torque contribution with a higher value
of wy would result in lower overall exoskeleton torque, this
was only the case for some sections of the gait cycle.

IV. CONCLUSIONS

Trajectory optimization has proven to be a highly flexible
method for determining the appropriate exoskeleton control
actions that incorporate human inputs and safety constraints.
Although the current EksoGT does not have them, the
results show that the addition of powered ankles allow the
human/exoskeleton system to better track normative human
joint trajectories, which is an important aspect of gait therapy.
Furthermore, the weights in the cost function provide a way
to easily shift the priorities of the optimization among several
possible rehabilitation-relevant goals.
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