
MAG-1.0 User Manual

Chan Ngo

INRIA, 35042 Rennes Cedex, France

Tool Name : MAG - Monitor and Aspect Generator

Developed by : Chan Ngo

Owened by : INRIA, France

Maintained by : Chan Ngo (chan.ngo@inria.fr)

Realeased in : October 2014.

Description : MAG is a tool for generating monitored versions of SystemC
models in order to perform statistical model checking with Plasma-Lab. MAG
is based on the techniques in the CHIMP tool by Sonali Dutta, Deian Tabakov,
and Moshe Y. Vardi.

Download : https://project.inria.fr/plasma-lab/mag_manual/

Platform : MAG can be installed and run in any unix environment (e.g.,
Ubuntu Linux, Mac OS,...).

License : MAG uses GNU GPL Version 3.

1 Components

MAG consists of 3 following components:

– MAG-1.0: This component is reponsible to automatically generate the mon-
itors and the aspect advice file for instrumentation in order to observe exe-
cution traces of the SystemC model.

– AspectC++-1.2: It is used by MAG to instrument the model-under-verification
(MUV).

– SystemC-2.3.0 modified: The patched version of OSCI kernel-2.3.0. The pat-
ach enables user-defined temproal resolutions (sampling rates) during observ-
ing execution traces.

https://project.inria.fr/plasma-lab/mag_manual/

2

2 Installing MAG

To install and run MAG, the following packages are required:

– boost library

– autoconf 2.61 and later

– automake 1.10 and later

– libtool 2.4 and later

– GNU make 3.81 and later

To install run make (to compile MAG) and run make clean to uninstall MAG.
In order to make the instrumented SystemC model run, the modified version of
SystemC is needed. To install SystemC, please refer to the INSTALL file in the
provided SystemC package.

3 Running MAG

To run MAG, users need to write a configuration file first containing all prop-
erties to be verified with the declarations of all used primitives, as well as other
necessary information. From this configuration, MAG generates the monitors
and an aspect-advice file that is then used by AspectC++ to generate the in-
strumented model. Finally, the instrumented MUV code and the monitor are
compiled together and linked with the SystemC kernel into an executable model.

The executable model resulting from the first step is run through our plugin
to execute the simulation with the inputs provided by users. For every property,
Plasma-lab checks the validity of the property according to the execution traces
produced by the corresponding monitor.

3.1 Generating Monitor with MAG

User runs MAG to generate the monitor and aspect advices according to the
property to be verified.

– Write the configuration file according to the verifying property (see Section
4 for more details)

– Change to the directory of the MAG tool and run

mag − conf path to configuration file

– MAG will generate three files: header and source files of the monitor, and
the aspect advice file “aspect definitions.ah” in the user-defined location

3

3.2 Instrumenting with AspectC++

User runs AspectC++ with the MUV, the generated monitor, and the aspect
advice file to instrument the MUV.

– Change the working directory to AspectC++-1.2
– Run the following command to generate puma.config file in the working

directory
ag + + −−gen config

– Copy the header and source of the generated monitor and the aspect advice
file “aspect definitions.ah” inside the source directory of the MUV

– For each header or source file of the MUV, user runs the following command
to generate the instrumented version.

ac+ + −c SOURCE HOME/file name
−o TARGET HOME/file name
−p SOURCE HOME/− I SOURCE HOME
−I SY STEMC HOME/include
−− config ASPECTC HOME/puma.config

where SOURCE HOME is the path to the source directory of the MUV,
TARGET HOME is the path to the directory where user wants the As-
pectC++ puts the instrumented version, SYSTEMC HOME is the path to
the patched version of systemc-2.3.0, and ASPECTC HOME is the path to
the AspectC++. Alternatively, user can use the sheel script included in the
examples to make the steps above automatically.

3.3 Compiling Instrumented Code

– In the main header file of the MUV, user includes the monitor header file,
for example

#include “monitor multi lift.h′′

– In the source file of the MUV, user adds the following line just before the
call to sc start()

mon observer ∗ obs = local observer :: createInstance(1, parameters);

The parameters depends on the generated monitor, for example, in the in-
cluded example of multi-lift system in the MAG tool package, it is:

mon observer ∗ obs = local observer :: createInstance(1,&liftsystem);

– User compiles the instrumented MUV with g++ compiler and links with the
patched SystemC libary, provided in MAG package

We also provide the shell scripts in the example directory of MAG tool that au-
tomatically generated the instrumented MUV. User can modify them according
to his requirements.

4

4 Configuration File Triggers

The configuration file is used to guide MAG generating the appropriate monitors
and aspect advice file using by AspectC++. Its triggers are given as follows:

– verbosity: The integer value between 0 and 9. It represents the level of
information messages outputing by MAG. The default value is 1. For example
to define the value of verbosity as 6. User can write:

verbosity 6

– output file: The path to the source file of the generating monitor. By de-
fault, MAG will generate a file monitor.cc in the working directory of MAG.
For example:

output file /home/user/model/my monitor.cc

– output header file: The path to the header file of the generating moni-
tor. The default header file is based on the name of the output file without
extension. For example:

output header file /home/user/model/my monitor.h

– mon name: The name of the generated monitor. The default is monitor.
For example:

mon name my monitor

– plasma file: The path to the generated Plasma Lab project file. For exam-
ple:

plasma file /home/user/PLASMA Lab− 1.3.0/my project.plasma

– plasma project name: The generated Plasma Lab project name. For ex-
ample:

plasma project name my project

– plasma model name: The Plasma Lab model. For example:

plasma model name my model

– plasma model content: The path to the executable SystemC model. For
example:

plasma model content /home/user/model/instrumented/muv

– write to file: Write execution traces to a file. For example, user does not
want to log the traces to file:

write to file false

5

– include: If the verifying property uses references to an object of a class or a
module. Then this trigger indicates the header file that needs to be included
in the header file of the monitor. For example, there is a reference to the
module A that is declared in the header file A.h, then we define the include
trigger as follows:

include A.h

– usertype: Consider an object of type class A, user wants to refer to at-
tributes of this object. These attributes can be protected, private, public, or
accessed by some getting methods. To make the monitor generated by MAG
can access these attributes, user uses the usertype trigger as follows:

usertype A

– type: If the verifying property uses references to an object of class or module
of type T, users need to tell MAG that this object has type T. To do that
user defines the value of type trigger. For example, consider a property that
refers to two object pointers of types class A and B, respectively. Then user
defines the trigger as follows:

type A ∗ a
type B ∗ b

– attribute: The value of this trigger defines which attributes of an object
that user wants to observe the values during the execution of the model.
The trigger syntax is attribute attribute name label. For example, assume
that user wants to observe the value of the private attribute t of the above
object pointer a of type class A and labels it with a t. User can write:

attribute a→ t a t

– att type: For each defined attribute, user needs to define its type. MAG sup-
ports all primitive datatypes of SystemC and C++ except char and string.
The trigger syntax is att type type name attribute label. For example, con-
sider the above attribute a t, assume that it is of type int. User write the
following trigger in the configuration file:

att type int a t

– eventclock: The value of this trigger defines a Boolean variable that is true
immediately when a specific event is notified. This variable ussually is used to
define a temporal resolution. For example, consider an event e of the object
a. The following Boolean variable e notified is set to be true whenever e is
notified.

eventclock a→ e.notified e notified

– location: The value of this trigger defines a Boolean variable that is true
whenever a location in the source code model will arrive during the simula-
tion. Location trigger provides four primitives entry, exit, call, and return

6

that refer to the location immediately before the first executable statement,
the location immediately after the last executable statement in a function,
the location that contains the function call, and the location immediately
after the function call, respectively. The syntaxes of these primitives in the
configuration file are given as follows:

location location variable name function pattern : entry
location location variable name function pattern : exit
location location variable name function pattern : call
location location variable name function pattern : return

where the function pattern follows the same as pointcut expressions in As-
pectC++. The function pattern has the form return type class name ::
funtion name(argument list).

– plocation: This trigger helps user define a Boolean variable that holds the
value true immediately before or after the execution of all statements that
match the value of the trigger (defined as a regular expression). The syntax
of this trigger is plocation location variable name statement : before or
plocation location variable name statement : after. For example, we want
to declare the Boolean variable loc1 that holds the value true immediately
before the execution of all statements that contain the devision operator “/”
followed by zero of more spaces, and the variable “a”. We write the following
trigger in the configuration file.

plocation loc1 “/ ∗ a” : before

– value: Using this trigger user can define a variabble that will contain the
return value, a parameter value passing to a function defined in the SystemC
model. Then user can use this variable to define his formula. The syntax is
given as follows:

value type of variable name of variable function pattern : i

It defines a variable that contains the value passed as ith (i can be from 1
to the number of arguments the function has) parameter to the function.

value type of variable name of variable function pattern : 0

It defines a variable that contains the return value of the function.
– formula: The value of this trigger is a specification that contains two ele-

ments in the form {BLTLformula}@{name}. The firt element is a BLTL
formula and the second one is the name of the specification. For example:

formula G <= #100(a t >= 1)@property 1

– time resolution: The user-defined temporal resolution. For example:

time resolution MON TIMED NOTIFY PHASE END

– comment: To make a line as a comment, user puts # at the beginning of
the line, then MAG will ignore it.

We also provide a dummy mm config.txt file in the source code directory of
MAG. User can modify it according to his requirements.

7

5 BLTL and Clock Expressions

User specifies the desired properties in bounded linear temporal logic formulas
and the sampling rate of states in the execution traces by clock expressions.
BLTL is defined by the following grammar, where the time bound t that repre-
sents an amount of simulation time or a number of state changes in an execution
trace (in our verification framework, it has the form <= #number):

ϕ ::= true|false|p ∈ AP |ϕ1 ∧ ϕ2|¬ϕ|ϕ1Utϕ2.

The temporal modalities F (the “eventually”, sometimes in the future) and G

(the “always”, from now on forever) can be derived from the “until” U as Ftϕ =
trueUtϕ and Gtϕ = ¬Ft¬ϕ, respectively. The semantics of BLTL is defined w.r.t
finite sequences of states of M. We denote the fact that ω, a finite sequence of
states, satisfies the BLTL formula ϕ by ω |= ϕ.

• ωk |= true and ωk 6|= false

• ωk |= p, p ∈ AP if and only if p ∈ L(ω(k))
• ωk |= ϕ1 ∧ ϕ2 if and only if ωk |= ϕ1 and ωk |= ϕ2

• ωk |= ¬ϕ if and only if ωk 6|= ϕ
• ωk |= ϕ1Utϕ2 if and only if there exists an integer i such that ωk+i |= ϕ2,
Σj<i(tj − tj−1) ≤ t, and for each 0 ≤ j < i, ωk+j |= ϕ1

The set of atomic propositions AP that is formed by the primitives that are
declared in the configuration file of our framework and let users define properties
about the states of user-code, and SystemC kernel. We have the following:

SystemC expr ::= model expr|kernel expr
model expr ::= att expr|loc expr|arg expr|proc expr
loc expr ::= [before|after]{code label|

syntax expr}|func name :
{entry|exit|call|return}

arg expr ::= func name : nonnegative integer
proc expr ::= proc name.proc state

kernel expr ::= phase expr|event expr
phase expr ::= kernel phase

event expr ::= event name.notified

att expr is an expression that involves evaluations of variables including
module’s protected and private attributes. User uses attribute trigger to form
model expr. For example, attribute m → a a to observe the value of a in the
module M given that the triggers usertype and type are defined as usertype M
and type M ∗ m, respectively.

loc expr is an expression that uses a location in the source code of the verify-
ing model which is defined using location and plocation triggers in the configura-
tion file. For example, assume that we want to specify the property “always the
value of the variable a in the module M is different from 0 whenever it is used as a

8

divisor within t seconds”. We first define the trigger plocation loc1 “/∗a” : before
that declares the Boolean variable loc1 that holds the value true immediately
before the execution of all statements that contain the devision operator “/”
followed by zero of more spaces, and the variable “a”. With the attribute above,
the property is expressed as follows:

Gt(loc1→ (a! = 0))

Another example, assume that user wants to specify the property “send()
remains blocked until receive() has returned within t seconds”. The following
triggers declare Boolean variables send start and send done that hold the value
true immediately before and after a function call of the function send() of the
module producer, respectively.

location send start “%producer :: send()” : call
location send done “%producer :: send()” : return

Similarly, the trigger location rcv “%consumer :: receive()” : return declares
a Boolean variable rcv that holds the value true immediately after a function
call of the function receive() of the module consumer. Using these triggers, the
property is expressed as follows:

Gt(send start→ (!send done Ut rcv))

arg expr is an expression that uses the return values, parameter values pass-
ing to functions defined in the SystemC model. This expression can be formed
by using the trigger value in the configuration file.

For each process name, the primitive proc expr indicates the status of this
process in the simulator kernel that can be waiting, runnable, or running. The
kernel expr consists of the primitives to expose the current state of the kernel
(phase expr) (e.g., end of delta-cycle notification) and when a specific event
is notified (event expr). For instance, the following trigger declares a Boolean
variable wevent that holds immediately when write event is notified.

eventclock wevent write event.notified

This variable can be used to define a temporal resolution in the configuration
file of our framework.

As explained earlier, users can define their own temporal resolutions. A tem-
poral resolution is specified by using a disjunction of events, locations or kernel
phases as in the BLTL formula of the form (clk1|clk2|...). For instance, the spec-
ification

time resolution loc1

will check the formula over a trace of states sampled each time the location
loc1 is reached. If user provide no clock expression, MAG will sample at all 18
predefined kernel phases. Table 1 shows the list of 18 predefined kernel phases.

9

Phase name Sampling location

MON INIT PHASE BEGIN Before initialization phase begins

MON INIT UPDATE PHASE BEGIN Before initialization update phase begins

MON INIT UPDATE PHASE END After initialization update phase ends

MON INIT DELTA NOTIFY PHASE BEGIN Before initialization delta notification phase begins

MON INIT DELTA NOTIFY PHASE ENDS After initialization delta notification phase ends

MON INIT PHASE END After initialization phase ends

MON DELTA CYCLE BEGIN Before a delta cycle begins

MON DELTA CYCLE END After a delta cycle ends

MON EVALUATE PHASE BEGIN Before an evaluation phase begins

MON EVALUATE PHASE END After an evaluation phase ends

MON UPDATE PHASE BEGIN Before an update phase begins

MON UPDATE PHASE END After an update phase ends

MON DELTA NOTIFY PHASE BEGIN Before a delta notification phase begins

MON DELTA NOITIFY PHASE END After a delta notification phase ends

MON TIMED NOTIFY PHASE BEGIN Before a timed notification phase begins

MON TIMED NOTIFY PHASE END After a timed notification phase ends

MON METHOD SUSPEND After an sc method has ended execution

MON THREAD SUSPEND After an sc thread has suspended

Table 1: Predefined Kernel Phases

10

6 Contact

Chan Ngo
chan.ngo@inria.fr
INRIA Rennes
263 avenue du Général Leclerc, 35042 Rennes, France

	MAG-1.0 User Manual
	Components
	Installing MAG
	Running MAG
	Generating Monitor with MAG
	Instrumenting with AspectC++
	Compiling Instrumented Code

	Configuration File Triggers
	BLTL and Clock Expressions
	Contact

