
Pluggable Personal Data Servers

Nicolas Anciaux*, Luc Bouganim*, Yanli Guo*, Philippe Pucheral*,**,
Jean-Jacques Vandewalle***, Shaoyi Yin*

* INRIA Rocquencourt
Le Chesnay, France

<Fname.Lname>@inria.fr

** PRISM Laboratory
Univ. of Versailles, France

<Fname.Lname>@prism.uvsq.fr

*** Gemalto
La Vigie, La Ciotat, France

<Lastname>@gemalto.com

ABSTRACT
An increasing amount of personal data is automatically gathered
on servers by administrations, hospitals and private companies
while several security surveys highlight the failure of database
servers to keep confidential data really private. The advent of
powerful secure tokens, combining the security of smart card
microcontrollers with the storage capacity of NAND Flash chips,
introduces a credible alternative to the systematic centralization of
personal data. By embedding a full-fledged database server in
such device, an individual can now store her personal data in her
own secure token, kept under her control, and never disclose in
clear her private data to the outside untrusted world. This
demonstration shows the benefit of the proposed approach in
terms of privacy protection and pervasiveness through a
healthcare scenario. This scenario is extracted from a field
experiment where medical folders embedded in secure tokens are
used to improve the coordination of medical care at home for
elderly people. The demonstration also highlights interesting
features of the embedded DBMS engine introduced to tackle the
secure token’s strong hardware constraints.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – Query processing
H.2.7 [Database Management]: Database Administration –
Security, integrity, and protection

General Terms
Design, Experimentation, Security

Keywords
Privacy, Secure device, Storage model

1. INTRODUCTION
The amount of personal information collected by governments,
corporations, commercial Web sites, public and private agencies,
is increasing at a high rate. Directives and laws related to the

safeguard of personal information slow the flow without stopping
it. The suspicion of individuals towards this ineluctable
centralization of personal data is merely growing at the same rate.
It is fueled by computer security surveys pointing out the
vulnerability of database servers against external and internal
attacks and also against negligence which led recently to
unprecedented sensitive information leakages [4, 5].
Authentication and access control are inoperative in these cases.

Complementary protections can be devised depending on where
the trust resides in the system. Hippocratic databases ensure that
personal data is used in compliance with the purpose for which
the donor gave his consent [3] but require the database server to
be trusted. Encrypted databases require either trusting the server
or the clients depending on the place decryption occurs [8]. An
alternative solution is anonymizing the data [7], assuming the data
publisher is trusted, at the price of lesser data accuracy and
usability. Finally, databases can be hosted in secure hardware but
this solution applied so far only to small mono-user databases.

Today, a new generation of secure hardware devices emerges and
drastically transforms the way personal data can be managed.
Whatever their form factor (smart card, secure dongle, secure
USB stick), secure tokens combine the hardware security of smart
card microcontrollers, the storage capacity of memory sticks and
the performance and universality of the USB communication
protocol [6]. Thanks to secure tokens, personal records can be
managed under the control of the record owner herself. The use of
secure tokens for e-governance (citizen card, driving license,
passport, social security, transportation, education, etc) and
healthcare (secure personal folders) is actively investigated by
many countries. In these initiatives however, a secure token is
primarily seen as a raw secure repository, i.e., a set of documents
protected by the tamper-resistance of the token and unlocked on
demand by the record owner thanks to a PIN code.

This demonstration paper advocates a much broader exploitation
of the secure token storage and computing capabilities. It suggests
the idea of embedding in secure hardware the complete chain of
software usually found on traditional servers, that is a Web server,
a set of servlet-based applications and a DBMS engine managing
the on-board database and enforcing powerful access control
rules. The resulting system, named PlugDB, builds upon a set of
research results published earlier [1, 2, 9]. The demonstration
scenario itself is based on a real experiment of secure and mobile
healthcare folders used to improve care coordination at home for
dependent people. Beyond this experiment, we expect that
PlugDB will contribute to open new ways of thinking about and
organizing the management of personal data.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD’10, June 6–10, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06...$10.00.

2. CONTEXT AND PROBLEM STATEMENT
A Secure Portable Token (SPT for short) combines in the same
hardware platform a secure chip and a mass storage NAND Flash
memory (several Gigabytes soon). The secure chip is of the smart
card type, with a 32 bit RISC CPU clocked at about 50 MHz,
memory modules composed of ROM, tens of KB of static RAM,
a small quantity of internal stable storage (NOR Flash) and
security modules. The mass storage NAND Flash memory is
outside the secure chip, connected to it by a bus, and does not
benefit from the chip tamper resistance.

Gemalto, the smart card world leader, has developed a JavaCard
3.0 platform for this family of devices which allows the
development of embedded Web applications based on Servlet
technology. The communication with the external world is
supported by the USB 2.0 and the IP protocols. INRIA has
developed a database kernel on this platform, providing data
storage and indexing, query execution, access control and
transaction management. SQL commands are sent to this DBMS
kernel through a JDBC bridge. Hence, the SPT with its software
suite can be seen as a full-fledged data server accessible through
any web browser running on any device equipped with a USB
port (laptops, netbooks, PDA and even cell phones). The resulting
architecture, called PlugDB, is pictured in Figure 1. Compared to
a regular server, a PlugDB server is personal, self-administered,
pluggable on demand, does not impose any network connection
and provides unprecedented security guarantees.

However, the SPT platform introduces severe hardware
constraints. First, security factors imply that the RAM (which has
a poor density) must be small – the smaller the silicon die, the
most difficult it is to snoop or tamper with processing. Second,
the NAND Flash memory exhibits asymmetric costs for reads and
writes. Read and writes are done at a page granularity but a page
cannot be rewritten without erasing the complete block containing
it, which is a costly operation. In addition, a block wears out after
about 105 repeated write/erase cycles. Third, a SPT cannot ensure
data durability on its own and remote data availability is reduced
to the time windows where the SPT is plugged in a terminal
linked to the network.

This leads to the following problem statement: (1) how to execute
queries with acceptable performance on a Gigabyte-sized
database with a tiny RAM, (2) how to design a transactional
storage and indexing model tackling the NAND Flash constraints
and (3) how to reestablish data durability and availability without
compromising security. The next section sketches how these
issues have been addressed.

Authentication

Access Control

Query manager

Cryptography mgr

Index / Storage

W
eb

 S
er

ve
r

Sy
nc

hr
on

iz
at

io
n

Se
rv

le
ts

Operating system

JVMTCP/IP
USB

OS multi -
thread

FLASH
(GB size)

RAM

FLASH
NOR

CPU Crypto Personal
DatabaseTransaction manager

Smart USB token Smart Badge
Figure 1. PlugDB Server

3. TECHNICAL CONTRIBUTIONS
The first challenge to be tackled is to compute regular SQL
queries over arbitrarily large tables, with Kilobytes of RAM (the
SPT we use holds 64KB of RAM among which 12KB only are
devoted to the DBMS) and no resort to swapping (NOR Flash
writes are too costly and NAND Flash writes would cause blocks
to wear out more quickly and would introduce a security hole
unless swapped data is encrypted).

In [2], we shown that last resort join algorithms (like sort or hash
joins) as well as known indexing techniques lead to unacceptable
performance in our context. We then proposed a new indexing
model inspired by data warehouse techniques where the ratio
between the database size and the RAM size resemble ours. This
model is particularly suited for tree-based database schemas
where a root table (e.g., Prescriptions in a healthcare database)
references children tables (e.g., Visits and Drugs) in turn
referencing sub-children tables (e.g., Doctors and MedicalLabs).
Natural joins between these tables are speedup thanks to
generalized join indexes called “Subtree Key Tables” or SKT.
Each SKT joins all tables in the subtree to the subtree root with
the IDs sorted based on the order of IDs in the root table. For
example, the entries of the SKT rooted at Prescriptions are of the
form (PrescID, VisitID, DoctorID, DrugID, MediclabID) and are
sorted on PrescID. This enables a query to directly associate a
Prescription with the Doctor who prescribed it and/or the Lab which
delivered it, for example.

To speed up selections, we propose an additional index called
“climbing index”. A climbing index on a lower table T in the tree-
based database schema maps values to lists of identifiers from T
as well as lists of identifiers for each table T’ that is an ancestor of
T in the tree. Combined together, SKTs and climbing indexes
allow selecting tuples in any table, reaching any other table in the
path from this table to the root table in a single step and projecting
attributes from any other table of the tree. SPJ queries are
computed over this indexing model in a pure pipeline fashion
following the iterator model.

The indexing model presented above has been proposed in a
context different from PlugDB where a static embedded database
containing highly sensitive data needs to be combined with public
external data sources [2]. The second challenge tackled in
PlugDB is then to adapt such a massive indexed scheme to the
NAND Flash constraints when updates need to be performed. As
personal data servers are likely to gather historical data, audit
data, sensed data (e.g., healthcare folders, purchases, visited web
sites, bookmarks, geographic locations, etc), tuple insertions are
common and must be managed efficiently. Unfortunately, state of
the art Flash-based storage and indexing methods were not
designed with embedded constraints in mind and poorly adapt to
this context. Roughly speaking, they adapt traditional indexing
methods by deferring index updates using a log and batching
them to decrease the number of rewrite operations in Flash
memory [9]. However, all these methods maintain additional data
structures in RAM to limit the negative impact of delayed updates
on lookup cost. They also perform “out-of-place” updates (usually
through a proprietary and opaque Flash Translation Layer)
introducing performance unpredictability and reducing Flash
memory usage.

In [9], we proposed a new alternative for storing and indexing
Flash-resident data, called PBFilter, which specifically addresses
the embedded context. PBFilter organizes the storage and
indexing structure in a purely sequential way to minimize the
need for buffering and caching and to avoid the unpredictable side
effects incurred by out-of-place updates. But how to look up a
given key in a sequential list with acceptable performance? We
answered this question using two principles. Summarization
consists of building an index summary used at lookup time to
quickly determine the region of interest in the index list. This
introduces an interesting source of tuning between the
compression ratio of the summary and its accuracy (i.e., number
of false positives). We shown that Bloom filters can be used
advantageously as a summarization algorithm, each Bloom filter
summarizing all index keys present in a page of Flash.
Partitioning consists of vertically splitting these Bloom filter
summaries in such a way that only a subset of partitions need to
be scanned at lookup time (actually one per hash function). This
introduces a second trade-off between lookup performance and
RAM consumption. The key idea behind Summarization and
Partitioning is speeding up lookups without hurting sequential
writes in Flash memory. PBFilter gracefully accommodates files
up to a few million tuples, a reasonable limit for embedded
applications. PBFilter is optimized to support append-oriented
files but deletion and updates can be supported with acceptable
performance degradation.

The third challenge tackled in PlugDB is to reestablish data
durability and availability without compromising security,
considering that a SPT is vulnerable (it can be lost, stolen or
destroyed) and weakly connected. The solution proposed in [1] is
to reintroduce in the architecture a traditional server which will

contain only encrypted data. This server can be thought as a
highly available extension of the embedded NAND Flash, thereby
introducing a third level of stable memory. NOR Flash is the first
level of stable memory. It supports high speed reads and benefits
from the tamper-resistance of the microcontroller but its storage
capacity is low. NAND Flash is the second stable memory level,
it provides a much larger capacity, good read performance (much
better than a disk though slower than a NOR Flash) but is not
hardware protected. Hence, its content must be encrypted to
prevent confidentiality attacks and hashed to detect integrity
attacks. The encryption/decryption/hashing processes take place
in the secure microcontroller. The remote server can store
encrypted database archives which can be used to restore the
content of a SPT NAND Flash if necessary. It can also store
encrypted data the record owner would like to share within a
trusted circle of people. In that case, decryption keys are
dynamically distributed thanks to a cryptographic protocol among
all SPTs participating to this trusted circle. Each one can then
access to this data according to its own privileges, in a way
similar to accessing data physically stored in their own NAND
Flash, at the price of an extra communication with the remote
server. This introduces a distinction between three classes of data
that the record owner is free to manage according to her
perception of the privacy risks: secret data remains confined in
the owner’s SPT and are therefore not durable nor available when
the token is unplugged; durable data is replicated encrypted on a
remote server for durability purpose only; restricted data is
durable data made available to a trusted circle of people by a
secure exchange of encryption keys between SPTs. Note
however, that SPT owners never have access to those encryption
keys!

Figure 2. Demonstration Interfaces

4. DEMONSTRATION SCENARIO
The demonstration platform is composed of a set of SPTs (one for
each member of a trusted circle), a netbook used as a terminal to
interact with each SPT and an –untrusted – server used for
durability and availability purposes of durable and restricted data.

The first part of the demonstration presents the rationale of the
approach and shows the benefits of PlugDB in terms of privacy
protection and pervasiveness. This part is based on a real case
scenario. Indeed, PlugDB will be experimented early 2010 for
eighteen months in the context of a medical-social network
providing medical care and social services at home for elderly
people (see http://www-smis.inria.fr/~DMSP). The demonstration
will show how PlugDB is used in this context to make personal data
available in disconnected mode (during a practitioner visit at home),
to guarantee data durability (in case of a SPT loss) and to securely
share data among the patient, her family doctor and a trusted nurse.

The second phase of the demo focuses on PlugDB’s core
technology. The objective is to explain the performance observed
during the first part of the demonstration by analyzing the queries
generated by the application: global queries to display synthesis
of a folder, unique select/update to retrieve/insert a particular
event in the folder, bulk inserts to synchronize the SPT with a
remote server. For each query, the resulting execution plan will be
plotted and statistics delivered: CPU and I/O cost per component
(access control, query processing, transaction, crypto-protection),
highest peak of RAM consumption, NAND Flash usage (number
of valid and obsolete pages wrt. total size of the database).

To the best of our knowledge, no system similar to PlugDB exists
today and, besides the benefits expected in terms of privacy
protection, this demo will give the opportunity to demonstrate
exotic core database techniques.

5. ACKNOWLEDGMENTS
This research is partially supported by the French National
Agency for Research (ANR) under RNTL grant PlugDB and by
the French Yvelines District under grant DMSP.

6. REFERENCES
[1] T. Allard, N. Anciaux, L. Bouganim, P. Pucheral, R. Thion.

2010. Trustworthiness of Pervasive Healthcare Folders,
chapter of the book "Pervasive and Smart Technologies for
Healthcare". IGI Global.

[2] N. Anciaux, M. Benzine, L. Bouganim, P. Pucheral, D.
Shasha. 2007. GhostDB: Querying Visible and Hidden data
without leaks. ACM SIGMOD.

[3] R. Agrawal, J. Kiernan, R. Srikant, Y. Xu. 2002. Hippocratic
Databases. VLDB.

[4] Computer Security Institute. 2009. CSI/FBI Computer Crime
and Security Survey. http://www.gocsi.com.

[5] DataLoss DB. 2009. http://datalossdb.org.

[6] Eurosmart. 2008. Smart USB token. White paper, Eurosmart.

[7] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu. 2010.
Privacy-preserving data publishing: A survey on recent
developments. ACM Computing Surveys 42(4).

[8] R. Sion. 2007. Secure Data Outsourcing. VLDB.

[9] S. Yin, P. Pucheral, X. Meng. 2009. A Sequential Indexing
Scheme for Flash-Based Embedded Systems. EDBT.

