INTEGRATION OF COOPERATIVE SERVICES WITH AUTONOMOUS DRIVING

Dr. José E. Naranjo

Madrid, October, 1st
10TH PLANNING, PERCEPTION AND NAVIGATION FOR INTELLIGENT VEHICLES (PPNIV´18)

Integration of Cooperative Services (C-ITS) with Autonomous Driving
1. CONTEXT OF COOPERATIVE CONNECTED AND AUTOMATED MOBILITY
Autonomous vehicles

An autonomous vehicle is a vehicle with the capacity of performing the dynamic driving task. This task includes all of the real-time operational and tactical functions required to operate a vehicle in on-road traffic, excluding the strategic functions such as trip scheduling and selection of destinations and waypoints, and including without limitation:

1. Lateral vehicle motion control via steering (operational);
2. Longitudinal vehicle motion control via acceleration and deceleration (operational);
3. Monitoring the driving environment via object and event detection, recognition, classification, and response preparation (operational and tactical);
4. Object and event response execution (operational and tactical);
5. Maneuver planning (tactical); and
6. Enhancing conspicuity via lighting, signaling and gesturing, etc. (tactical).
Levels of Driving Automation

SAE J3016. Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles
Architecture of an autonomous vehicle

Schematic view of driving task showing the dynamic driving task (DDT)
Connectivity vs Automation

Examples of autonomous vehicles

Volvo
Connectivity vs Automation

Examples of autonomous vehicles

Tesla
Connectivity vs Automation

Examples of autonomous vehicles

Google (Waymo)
IROS 2018

Connectivity vs Automation

Examples of autonomous vehicles

Uber
Examples of autonomous vehicles
Conclusions of the current state of play in autonomous vehicles field

1. There are certain circumstances in which an isolated autonomous vehicle is incapable of responding, limiting itself to the information provided by its own sensors and its driving systems, independently of the:
 • Accuracy of its perception.
 • Intelligence of its auto-pilot.

2. There are certain circumstances that could be solved by the perception and the intelligent pilots but, due the random casuistic, the effort to success in the 100% of the situations is extremely high.

3. There are certain circumstances of medium complexity that increases the workload of the autonomous driving systems and the number of sensors.
Connected Vehicle

- Connected vehicles are vehicles that use any of a number of different communication technologies to communicate with the driver, other cars on the road, roadside infrastructure and the “Cloud”.
- This technology can be used to not only improve vehicle safety, but also to improve vehicle efficiency and commute times.
V2X Communications

- Wireless communications have been identified as key technologies for increasing road safety and transportation efficiency.
V2X Technology and standardization

- **Short range Communications, based on IEEE 802.11p /ETSI ITS-G5.**
 - Low latencies.
 - Multihop.
 - Geo-Broadcast.
 - No service provider. 5.9 GHz band.
 - Bandwidth: 27 Mbps.

- **Cellular Telephony**
 - Latencies in function of the network load.
 - Network cell schema.
 - Service provider: 3/4 G.
 - Bandwidth: max. 1 Gbps

- **5G**
 - Low Latencies.
 - Multihop (Cellular-V2X).
 - Broadcast (Cellular-V2X).
 - Network cell schema; local cell services enabled.
 - Service provider: 5 G.
 - Bandwidth: ∞ Gbps
Connectivity vs Automation

V2X Services
V2X Services → Cooperative Systems (C-ITS)

- **European C-ITS Platform**
- Cooperative Intelligent Transport Systems (C-ITS) use technologies that allow road vehicles to communicate with other vehicles, with traffic signals and roadside infrastructure as well as with other road users.
V2X Services → C-ITS Day-1, 1.5

These services were chosen on their importance from policy perspectives or potential to answer major societal needs, such as increasing road safety. A further split was introduced based on technical readiness in the short-term (Day 1 vs Day 1.5).
Connectivity vs Automation

Convergence between automation and connectivity

Connected

- Communicates with other vehicles, nearby infrastructure and ITS backends

Autonomous vehicles

- Operates in isolation from other vehicles using internal sensors

Connected and Autonomous Driving
Connectivity vs Automation

Convergence between automation and connectivity
Steps towards Connected and Autonomous Driving

• It is not trivial.
• V2X communications are in continuous evolution.
• Standardization is a key element.
• The evolution of the V2X communications is in parallel with the evolution of autonomous vehicles, but with a shorter time for deployment.
• Direct link with the development and deployment of new generation communications technologies: 5G
• The first step is to take advantage of deployments and technologies made in the field of connected vehicles (C-ITS) to support V2X communications to autonomous vehicles.
• The real implementation of autonomous vehicles without connectivity is almost impossible in real deployments.
• V2X communications technologies are in development, although there are still many elements to solve.
• Cooperative systems can serve as catalysts for the deployment of autonomous and connected driving.
• Unification with the scope of the IOT → Cooperative, Connected and Autonomous Mobility (CCAM).
Connectivity vs Automation

Declaration of Amsterdam

• Declaration of Amsterdam
• 14 April 2016
• Signed by the transport ministers of all 28 EU member states

Declaration of Amsterdam

Cooperation in the field of connected and automated driving

14-15 April 2016
Declaration of Amsterdam

Highlights (objectives)

• to work towards a coherent European framework for the deployment of interoperable connected and automated driving, which should be available, if possible, by 2019;

• to bring together developments of connected and automated driving in order to reach their full potential to improve road safety, human health, traffic flows, and to reduce the environmental impact of road transport;

• to adopt a “learning by experience” approach, including, where possible, crossborder cooperation, sharing and expanding knowledge on connected and automated driving and to develop practical guidelines to ensure interoperability of systems and services;

• to support further innovation in connected and automated vehicle technologies to strengthen the global market position of European industry; and

• to ensure data protection and privacy.
V2X European projects
The C-Roads Platform is a joint initiative of European Member States and road operators for testing and implementing C-ITS services in light of cross-border harmonization and interoperability.
2. EUROPEAN PROJECT AUTOCITS IN THE CONTEXT OF COOPERATIVE CONNECTED AND AUTOMATED MOBILITY
“AUTOCITS aims to contribute to the deployment of C-ITS in Europe and to boost the role of C-ITS as catalyst for the implementation of autonomous driving”

C-ITS: Intelligent Transport Systems (ITS) where ITS stations (vehicles, roadside equipment, traffic control centers and personal devices) communicate and share information.

CAD – Connected & Autonomous Driving take advantage of a variety of techniques to detect their surroundings and advanced control systems to interpret sensory information to identify appropriate navigation paths, as well as obstacles and relevant signage.

Regulatory Framework

European Transport Network – Atlantic Corridor
AUTOCITS: Partners & Figures

Programme: Connected Europe Facility
Starting date: 01-11-2016
Ending Date: 31-03-2019
Duration: 29 months

Call: CEF - 2015
Budget: 2,606,550 €
Coordinator: INDRA
Funding: 50%

Paris Pilot

Madrid Pilot

Lisbon Pilot
AUTOCITS - Objetives

- Study on the current National, European and International legal framework for autonomous driving
- Pilot C-ITS services for autonomous vehicles (AVs) under the applicable traffic regulation
- Cooperate with other current initiatives during the study: C-Roads, etc.
- Provide recommendations for regulations and large scale C-ITS deployments
Project Autonous Intelligent Transport Systems (C-ITS) is co-financed by the European Union’s Connecting Europe Facility (CEF).
Regulation study in AUTOCITS (Study)

National and European regulatory frameworks

Study of the national and European regulatory frameworks for the deployment of the Autonomous Driving

Advanced International regulations

United States of America, Japan, Singapore, South Korea, China, Australia, etc.

Propositions & Recommendations

Making propositions and recommendations for regulation and legal framework

Some of the aspects under study are:

Alignment with Vienna Convention
Normative on driving
Testing Legislation
Vehicle certification (individual vehicles, mass production)
Laws to be modified
Changes on SAE 3-5 already initiated/foreseen
AUTOCITS - Objetives

Study on the current National, European and International legal framework for autonomous driving

Pilot C-ITS services for autonomous vehicles (AVs) under the applicable traffic regulation

Cooperate with other current initiatives during the study: C-Roads, etc.

Provide recommendations for regulations and large scale C-ITS deployments
3 Pilots in the Atlantic Corridor

Location:
A9 – CREL Circular Regional Externa de Lisboa

Day 1 C-ITS Services:
- Slow or stationary vehicle & traffic ahead warning
- Weather conditions
- Other hazardous notifications

Test vehicles
1 autonomous vehicle
1 instrumented vehicle
1 autonomous shuttles

Location:
The highway A13

Day 1 C-ITS Service:
- Slow or stationary vehicle & traffic ahead warning
- Weather conditions
- Other Hazardous notifications

Test vehicles
4 connected vehicles
1 autonomous vehicle

Location:
The HOV Lane located between the M30 and M40

Day 1 C-ITS Services:
- Slow or stationary vehicle & traffic ahead warning
- Road works warning
- Weather conditions

Test vehicles
4 connected and connected vehicles
2 autonomous vehicles

Pilot Overview - Spain

Road: A6 Autovía del Noroeste, stretch between M30 and M40, Reversible high occupancy lane

Length: 10 kms, **15 RSUs** have been installed

Traffic conditions
- More than 20,000 vehicles/day
- Close to traffic: controlled tests
- Open to traffic: private vehicles and public collective transport (bus)

Vehicles involved
- **Autonomous vehicles:** 2 vehicles
- **Connected vehicles:** 4 vehicles

C-ITS Day 1 services
- **Service 1:** Road Works information service
- **Service 2:** Weather information service
- **Service 3:** Traffic ahead service

Communication Channel
- **ITS G5**
Pilot Overview - Portugal

Roads
1) A9-CREL Between (Círculo Regional Exterior de Lisboa) and a national
 Length: 7 kms, 5 RSUs have been installed
2) Road connecting A9 and Faculty of Human Kinetics
 Length: 1 kms

Traffic condition
1) Open peri-urban traffic
2) Controlled traffic conditions

Vehicles involved
- Autonomous vehicles: 1 vehicle
- Autonomous shuttle: 1 vehicle
- Connected vehicles: 1 vehicle

C-ITS Day 1 services
- Service 1: Notification of slow or stationary vehicles
- Service 2: Weather information service
- Service 3: Other hazardous notifications

Communication Channel
- ITS G5

Project AutoC-ITS is co-financed by the European Union’s Connecting Europe Facility (CEF)
Project AutoC-ITS is co-financed by the European Union's Connecting Europe Facility (CEF)

Road: Peri-Urban A13 Highway entrance to Paris

Number of RSUs: 1 RSU has been installed

Traffic condition: Urban and peri-urban traffic

Vehicles involved
- **Autonomous vehicles**: C1 Evie
- **Connected vehicles**: 4 C3 vehicles

Communication Channel
- **ITS G5**

C-ITS Day 1 services
- **Service 1**: hazardous location notification
- **Service 2**: contextual speed adapting
- **Service 3**: traffic scheduling assist
Initial interoperability lab tests: (MADRID, February ‘18)

Test Infrastructure:
- INSIA Lab Equipment
- V2X Equipment from 5 manufacturers involved in all pilots

Test Objective: Validating compatibility on:
- Frequency channel
- Physical level compatibility
- Sending/Reception of CAM/DEMN messages

Test Results:
- Total compatibility at physical level.
- Frequency channel stablished in 5.900 GHz.
- Stable geo-networking version 0.1.
- Success in interoperability. Sending & reception of CAM/DEMN messages.
- The ITS station of the 5 manufacturers are interoperable at the AUTOCITS premises.

Initial cross-border tests: (LISBON, July ‘18):

Test infrastructure:
- Two connected vehicles
- V2X equipment from 3 manufacturers

Test Objectives:
- Ensure interoperability of one C-ITS Service (Traffic ahead warning)

Test Results:
- Timestamp origin of times is the same for all teams and are synchronized
- All fields of DEMN messages should be filled to be detected as DEMN
- MAC identification should be unique for each RSU
- Number of hops should be defined in order to forward of messages

Initial Conclusions:
- **Synchronization** of the time zone is needed
- The equipment must all work in the **same frequency**
- Same versions of geonetworking protocols must be implemented
AUTOCITS - Objectives

- Study on the current National, European and International legal framework for autonomous driving
- Pilot C-ITS services for autonomous vehicles (AVs) under the applicable traffic regulation
- Cooperate with other current initiatives during the study: C-Roads, etc.
- Provide recommendations for regulations and large scale C-ITS deployments
Contribution to/from the C-ROADS Platform

WG2 Technical Aspects/ WG3 Evaluation methodology

Expected Contribution from Platform:
- Harmonised C-ITS specifications
- Evaluation and assessment plan
- Use of service standardisation
- Adoption of Infrastructure Communication model
- Application of Hybrid Communications vision
- Cross border Validation tests
- Strategy for assessment and evaluation

Expected Contribution to the Platform:
- AUTOCITS C-ITS specifications for Harmonised C-ITS specifications
- Road Weather warning
- Roadworks warning
- Traffic ahead warning

• Implementation of services
• Provision of Communication model used
• Results of cross-border validation tests
• Results from pilots assessment and evaluation

Project AutoC-ITS is co-financed by the European Union's Connecting Europe Facility (CEF)
Contribution to/from the C-ROADS Spain
AUTOCITS - Objetives

- Study on the current National, European and International legal framework for autonomous driving
- Pilot C-ITS services for autonomous vehicles (AVs) under the applicable traffic regulation
- Cooperate with other current initiatives during the study: C-Roads, etc.
- Provide recommendations for regulations and large scale C-ITS deployments
Workshops

1st AUTOCITS WORKSHOP
MADRID, Nov 23rd 2017

2nd AUTOCITS WORKSHOP
PARIS, May 10th 2017

3rd AUTOCITS WORKSHOP
Lisbon, October 10th 2017

1st INTERNATIONAL WORKSHOP
Cologne, 5th July 2017

4th AUTOCITS WORKSHOP
Madrid February 2018

2nd INTERNATIONAL WORKSHOP
Vienna, 17th April 2018

5th AUTOCITS WORKSHOP
PARIS, Dec 11th 2018

6th AUTOCITS WORKSHOP
Lisbon, February 2019

FINAL AUTOCITS WORKSHOP
Madrid, March 2018

Upcoming
Pilot Deployment

Connected Vehicles

Autonomous Driving Pilot Deployment

Autonomous Vehicles
Regulation Study for Interoperability in the Adoption of the Autonomous Driving in European Urban Nodes

Project **AutoC-ITS** is co-financed by the European Union’s Connecting Europe Facility (CEF)
Thanks for your attention