
Future Depth as Value Signal for Learning Collision Avoidance

Klaas Kelchtermans1 and Tinne Tuytelaars1

Abstract— The constant miniaturization of robots reduces
the array of available sensors. This raises the need for robust
algorithms that allow robots to navigate without collision based
solely on monocular camera input. Towards this goal, we
propose a new learning-based method for the task of obstacle
avoidance. We propose a neural network policy for monocular
collision avoidance with self-supervision that does not require
actual collisions during training. To this end, we demonstrate
that a neural network is capable of evaluating an input image
and action by predicting the expected depth in the future. In this
sense, the future depth can be seen as an action-value-signal. In
comparison with our baseline model that is based on predicting
collision probabilities, we show that using depth requires less
data and leads to more stable training without need for actual
collisions. The latter can be especially useful if the autonomous
robot is more fragile and not capable to deal with collisions (e.g.
aerial robots). The proposed method is evaluated thoroughly in
simulation in a ROS-Gazebo-Tensorflow framework and will
be made available on publication2.

I. INTRODUCTION

Collision avoidance is one of the core tasks of autonomous
navigation besides road following and destination pursuing.
Smaller robots solely equipped by a light-weight camera
and a small GPU are capable of performing more and
more complex tasks. General collision avoidance remains
however challenging. Methods based on tracking keypoints
and keeping a map combined with path-planning have gained
impressive results [1]. However, these methods are unreliable
in case of blurred images, abrupt motions or lack of features
to track. In order to build an algorithm that can deal with
new situations and that can adjust its features in a data-driven
fashion without having to tweak many parameters, we look
at learning algorithms. These systems have the benefit of
learning and adapting from their mistakes which makes them
more suitable for dynamic environments[2].

Deep neural networks (DNN) have succeeded at increas-
ingly more complex tasks in computer vision and rein-
forcement learning [3], [4], [5], [6]. Convolutional neural
networks (CNN) can handle high dimensional input data,
like monocular RGB images, thanks to the parameters shared
spatially. Earlier attempts to use CNNs to predict control
relied on imitation learning in order to learn models to
imitate an expert (human) that collected the data [7]. Other
work succeeded at training a CNN to learn a quadcoptor
to follow forest trails based on a big dataset collected
with a straight-, left- and right-looking camera . The CNN
was trained with supervised learning [8] on this set of
labeled data. In [9], an iterative procedure (DAGGER) was
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demonstrated, using a dataset that was partially collected by
a human and partially by the policy being trained, resulting in
an aggregated dataset. Both methods required a big amount
of annotated data which is impractical in most applications.
Moreover, using a demonstration flight to represent collision
avoidance might not be the best setup as there can be many
equally valid routes.

Alternatively, one can decouple feature extraction and
control. For instance, in Michel’s car [10] a CNN is used to
estimate depth upon which a separate reinforcement learning
algorithm is applied. Similarly, in [11], estimated depths
are used as input for a behavior arbitration algorithm in
order to extract a policy for indoor navigation. The behavior
arbitration algorithm however needs a number of parameter
tweaking steps that differ for each environment and robot.

Recent work by Kahn et al. [12] comes closest to this
work. They succeed at making a deep recurrent neural
network (RNN) perform monocular autonomous navigation
through a lengthy corridor. They introduce a reinforcement
learning method, called generative computation graph, that
is learned with a self-supervised reward signal. The reward
is negative for each collision. This collision is detected by
a sudden change of inertia coming from the IMU. As the
labeling happens without human intervention we refer to this
as self-supervision. The neural network evaluates a number
of series of future actions by estimating the probability of a
collision within the next horizon of frames.

The main drawback of this system however is the need for
collisions. For many robots, this is impossible or at least very
expensive, especially if you want to apply it to aerial robots.
In this work, we therefore explore an alternative system
that uses depth as a self-supervised reward. This avoids
the requirement for numerous collisions and might actually
learn in a more stable way than predicting sparse collision
probabilities. If the goal is to avoid any close obstacle, a
depth scan seems to be very indicative of which direction is
to be preferred. Following this reasoning one could think of
the depth scan as an objective that should be maximized. To
simplify the setup in this exploratory phase of the project,
we decided to work with a LiDAR as depth sensor rather
than an estimated depth map. This suffices as a proof-of-
concept. At a later stage this LiDAR could be substituted
with a depth estimation network taking monocular camera
as input. Although this might seem to be a big assumption,
[10] and [11] already indicated the potential of estimated
depth maps as well as most recent work [13].

The research question we investigate in this work is
whether depth seen at future time-steps can be used as a
value-function for evaluating the current state-action-pair for



Fig. 1. Shared architecture of collision and depth prediction network.

the application of collision avoidance. In order to demon-
strate potential benefit we compare our method with a
baseline model that uses real collisions as in [12]. Besides
overcoming the need for collisions, we demonstrate how
predicting action-dependent future depth leads to more stable
learning behavior requiring much less training data.

In the remainder of the paper we first describe the general
background (Section II). Section III describes our method in
more detail as well as our baseline model. Section IV shows
the experimental setup as well as the results. In the appendix
the reader can find more details on the training procedure.

II. BACKGROUND
The annotation as well as most of the formulas are based

on [2] although simplified for readability. In reinforcement
learning, an agent interacts with its environment by perform-
ing actions. The agent tries to find a policy π that maps
current state s to an action a at time t in order to maximize
the expected accumulated discounted reward G, named the
return. This is estimated by the state-action value function
or Q-value:
Qπ(st, at) = Eπ,T [

∑H
k=0 γ

kRt+k+1|st, at]
in which γ represents the discount factor and R the

expected reward. The value-function depends on the one
hand on the environment bringing the agent to the next state
according to a transition model, T (st+1|st, at), and on the
other hand the policy π(at|st) picking the action from that
next state.

Our algorithm is model-free in the sense that it does
not try to model the transition function T explicitly. By
definition, the value-function Q should be the sum over
infinitely many time steps. However, it is often preferred to
work with a finite horizon H . A specific set of algorithms
are called myopic, which means that they only care about
the immediate reward, Qπ(st, at) = Eπ,T [Rt+1|st, at]. This
corresponds to a horizon H of 1.

In deep reinforcement learning (DRL), the value-function
is approximated by a neural network. The neural network
is then trained on experiences the agent has collected by
interacting with its environment: (st, at, rt, st+1). Sampling
batches of experiences in order to train the algorithm is called
experience replay. The value-function can then be updated
using the bellman-equation in a temporal difference setting:
Q(st, at) ← Q(st, at) + α[R(st, at) + γQ(st+1, at+1) −

Q(st, at)]
In this situation Q(st+1, at+1) is referred to as the boot-

strap. If the experience is collected by the policy being
trained, the bootstrap can be estimated for the same policy.
In this case the algorithm is called on-policy. In some

Fig. 2. Evaluation of a batch over different actions in one forward pass.

algorithms the data can be collected by a different policy
in which case they are referred to as off-policy. This is very
beneficial as it allows collected data to be reused for training
multiple agents overcoming excessive amounts of experience
collection. Our proposed method can be trained off-policy.

III. METHOD

In this section we first explore the feasibility of using
depth as a reward or a value-signal in a collision-avoidance
setting. Later we explain the architecture of our Depth-Q-net.
In the end, we explain our baseline model based on collision
prediction inspired by the work of Kahn [12].

Feasibility of Depth as Value- or Reward-signal

It appears that when using depth as a reward or return
function, both lead to a surprising contradiction:

Let’s first look at a situation where the difference in depth
is given as a reward. This means that an increase in depth
corresponds to a positive reward. However, mathematically
this leads to a value-function, Vt, that is similar to the
negative of the depth:
Vt = rt + γrt+1 + γ2rt+2 + ...
Vt = Dt+1−Dt+γ(Dt+2−Dt+1)+γ

2(Dt+3−Dt+2)+...
Vt = −Dt + (1− γ)Dt+1 + γ(1− γ)Dt+2 + ...
Vt ≈ −Dt

Note that we made abstraction of the relation of the value-
function with a policy. Previous derivation only holds in case
of navigating straight in the direction of the camera. From a
general policy iteration point of view, this would mean that
a state with closer objects and lower depth corresponds to
a higher value function so it is preferred over a state with
objects further away. This is of course not what we want.

Alternatively, we could assume the absolute depth as a
value-signal. This means according to the Bellman equation
that a decrease in depth, for instance by navigating towards
an object, corresponds to a positive reward. For now, we
leave out the discount factor γ, in order to avoid clutter in
the equation.
D

′

t = rt +D
′

t+1 ⇒ rt = D
′

t −D
′

t+1

This should not come as a surprise as the depth is then
seen as the amount of +1 rewards per traveled distance in
that direction up until the moment of collision. If the agent
learns to focus on the short term reward, the agent will be
drawn towards collisions rather than the other way around.

Obstacle avoidance is a reactive behavior. This means that
the optimal control should be predictable given solely current
view of the robot. This holds in cases with little drift and
large enough field-of-view. Using a myopic agent simplifies
the use of depth as a reward signal in reinforcement learning



Fig. 3. Canyon example. Left: Turtlebot, middle: RGB input, right: top-
down view of successful trajectory.

significantly. In this case the agent only cares about the
immediate reward, picking actions that make the maximum
reward most likely. In this setting the value-function corre-
sponds to the immediate reward, in our case the depth map at
the future time step. This does also resolve the contradiction
explained above.
Q(It, at) = rt = Dt+1

In this case the model learns to predict the depth seen at
the next frame Dt+1 given current frame It and proposed
action at. In this paper we provide the future depth with a
LiDAR at the next time step. However, the depth map could
also be provided by a CNN depth-estimator as the label is
allowed to be noisy. In that case the future depth network
can be learned from the depth prediction on the next frame
and the learning becomes fully monocular.

Depth-Q-Net

In figure 1, you can see the architecture of the network.
A mobilenet-0.25 [14] convolutional neural network extracts
Imagenet-pretrained [15] features from the current view of
the robot. The action is concatenated to the extracted feature
before it is fed to a fully-connected prediction layer of
4096 nodes and 1 fully-connected output layer of 26 nodes,
corresponding to 26 depth bins from the LiDAR smoothed
over 4deg from a forward field-of-view of 104deg.

The prediction layers are trained on batches of experiences
in a supervised fashion with an absolute loss.

The policy is extracted by evaluating the future depth
predictor on the current frame concatenated with different
actions in one forward pass (see figure 2). The policy selects
the action for which the predicted future depth scan has the
maximum minimum depth:
π(It) = argmaxat(min(Dt+1(It, at)))
This means that the policy only focuses on the closest

obstacle and takes the action that makes this closest obstacle
as far as possible. This allows us to simplify the training of
the future depth prediction in the sense that we only care
about the closest depth. Therefore we clip the depth in our
experiments at 2m.

Baseline: Coll-Q-Net

In order to explore the feasibility of using depth rather than
collisions as self-supervised reward signal, we implement
a similar baseline model named Coll-Q-Net. The DNN
models a value-function that approximates the probability

of a collision within the next H frames given current input
frame and an action, similar to [12].
Q(It, at) =

∑H
k=1 P (collisiont+k|It, at)

In our experiments the horizon H is taken as 5 time steps.
The prediction layers of figure 1 contain one fully-

connected layer of 4096 nodes and one fully-connected layer
of 25 nodes. This results in approximately the same amount
of parameters as the Depth-q-net. The fully-connected output
layer has one node which contains a sigmoid activation
function in order to map the output within the range of [0, 1]
to represent a probability. The prediction layers are trained
with a cross-entropy loss. Experiments indicated the cross-
entropy loss to be more stable than the mean-squared error
or absolute loss.

The policy is extracted in a similar fashion, evaluating
the action-value-function for a batch of actions as visible in
figure 2. The action with the lowest probability of collision
in the near future is selected:
π(It) = argminatQ(It, at)

Training

The prediction layers of the Depth-Q-Net and Coll-Q-
Net are trained in an off-policy manner. This is beneficial
as a single dataset can be collected from which multiple
models can be trained in parallel, avoiding the need for data
collection during training.

All experiences (It, at, yt, dt+1) are saved in a dataset and
used to train the models in a supervised fashion. At each
collision, the simulated environment is restarted and the last
H frames get a future collision label yt = 1, similar to the
previous work of Kahn et al. [12]. The Depth-Q-Net does
not require any collisions, therefore the last H frames of
each run are discarded when training Depth-Q-Net. The data
is collected by an exploration policy that randomly picks a
continuous action (yaw-turn) in the range [-1:1] according
to an Ornstein-Uhlenbeck process [16] to impose temporal
correlation.

Although it did not have a big influence, it appeared that
keeping the feature extracting part of the Mobile-0.25 net
fixed was beneficial for the robustness against overfitting.

IV. EXPERIMENTS

We first discuss the simulated environment after which the
results follow.

Environment

The experiments are done on a small turtlebot burger in
a simulated canyon made with ROS [17] and Gazebo [18].
The simulated canyons are generated randomly during data
collection. You can see an example of such a canyon in figure
3. The camera is set up on the same axis as the laser scan in
order to ensure that the field-of-views between the LiDAR
and the camera are aligned. The camera works at 10fps and
provides frames of size 410x308 covering a field-of-view of
104deg.

The goal of the policy is to navigate the turtlebot through
unseen canyons while it is driving at a fixed speed (0.5m/s)



TABLE I
ONLINE PERFORMANCE IN SIMULATED CANYON

Data Average Distance(std) Success rate(std) Imitation loss(std) Cross-Entropy(std) Abs Diff(std)
#runs CQN DQN CQN DQN CQN DQN CQN DQN

50 1.07 (1.72E-05) 1.68 (0.113) 0.0 (0.0) 0.0 (0.0) 1.03 (9.54E-03) 2.42 (9.32E-02) 0.57 (0.128) 0.08 (3.91E-03)
100 1.04 (1.28E-04) 4.91 (0.458) 0.0 (0.0) 0.7 (0.5) 1.22 (1.13E-02) 1.50 (1.23E-02) 0.75 (3.09E-02) 0.08 (2.33E-03)
200 2.69 (1.28) 12.19 (1.03) 0.0 (0.0) 8.0 (1.4) 1.80 (0.307) 0.97 (3.82E-02) 0.85 (0.269) 0.06 (2.91E-03)
500 6.72 (0.937) 21.96 (0.247) 2.7 (1.2) 20.0 (0.0) 1.46 (6.59E-02) 0.60 (3.54E-02) 0.36 (9.37E-02) 0.05 (8.67E-04)
700 8.32 (1.31) 22.21 (0.106) 4.7 (2.1) 20.0 (0.0) 1.25 (6.15E-02) 0.56 (2.61E-02) 0.26 (2.19E-02) 0.05 (2.43E-03)
900 14.14 (3.04) 22.30 (0.153) 11.3 (3.8) 20.0 (0.0) 1.04 (0.107) 0.55 (3.66E-02) 0.18 (4.27E-02) 0.04 (1.19E-03)

by steering with the yaw velocity [−1, 1] for a collision free
distance of 15m. At test time, we only use 3 quantization
levels for possible actions: -1, 0, 1. The networks are tested
in 20 canyons unseen in the training data. The only difference
in training Depth-Q-Net and a Coll-Q-Net is the learning-
rate (0.1 and 0.01) and the selection of the loss (absolute
and cross-entropy).

More detailed information on the training datasets and
hyperparameters can be found in table II and the appendix.

Results

We want to investigate the benefit of using depth as a self-
supervised reward signal over collisions. Besides the benefit
of avoiding the need for real collisions, we are curious if the
reward signal leads to more robust training for instance in
the setting of having less training data.

Figure 5 shows the convergence of the absolute loss for
the Depth-Q-Net and the cross-entropy loss for the Coll-Q-
Net on both training and validation data for networks trained
on different sizes of data.

Experience showed how not only the validation loss but
especially the variance of the validation loss over a batch
demonstrates potential overfitting. For the Depth-Q-Net this
is visible for a dataset of 100 runs or less while for the
Coll-Q-Net this is already visible at a dataset of 200 runs.

Table I gives details on the performance of the different
networks. The standard deviation is calculated on 3 networks
initialized with different seeding. The performance of each
network is evaluated in 20 canyons. This results in an average
collision free distance as well as a success rate (number of
times the distance was more than 15m). Because this work
solely focuses on the task of collision avoidance we do not
evaluate on the time spend to travel a certain distance. The
canyon however is made small enough to avoid spinning on
a local spot.

The imitation loss is calculated as the MSE between
the action picked by the network and the action provided
by a heuristic based on the behavior arbitration algorithm
taking depth as input[11]. The value is added as it gives a
better measure on how the performance appears similar to
an expert.

Although the reward signal is of a higher dimension and
the networks are trained on less data (leaving out the col-
lision), our method, Depth-Q-Net outperforms the baseline,
Coll-Q-Net significantly on all different evaluation strategies
when trained on a large enough dataset (500 runs).

Fig. 4. Depth-Q-Net qualitative result. Left in red: ground truth scan, left
in blue: future depth for left turn(up), straight(middle) and right turn(down).
Right: position of robot in canyon.

In case there is not enough data, the Depth-Q-Net could
still manage to pass through the canyon a number of times
when trained solely on 200 or 100 runs. This is not the case
for the baseline Coll-Q-Net. Although the imitation loss is
less bad for the Coll-Q-Net when trained on 50 or 100 runs,
the network could not drive much more than 1m without a
collision.

Figure 4 gives a snapshot of the evaluation of a Depth-Q-
Net in the canyon. On the left you can see in red the ground-
truth lazer scan. For each action, the future depth is predicted
by the network. As the Turtlebot is slightly heading to the
left wall, there is an increase in overall depth for turning to
the right and a decrease for turning to the left. Depth-Q-Net
is only trained to predict values up until 2m while the actual
depth is at 4m. Although this is far from accurate in absolute
values, it is good enough to extract a working policy from.

V. CONCLUSION

In this work we explore the feasibility of using depth
as a self-supervised value/reward-signal instead of collisions
detected by an IMU for learning collision avoidance (as in
[12]). We demonstrate that the use of depth not only leads
to better performance (less collisions), it also requires less
data. This is because the labels of collisions are more sparse,
giving relevant feedback only at the end of each run while
the Depth-Q-Net can be trained on any consecutive pair of
images.

In future work the depth could be provided with a monoc-
ular depth-estimation network, in which case it would not
require any additional sensors besides the RGB camera. The



Fig. 5. Convergence difference for different networks trained on different sizes of datasets.

TABLE II
DETAILS DIFFERENT SIZES OF DATASETS

# runs # samples # without collision
50 2214 1858

100 4258 3945
200 8854 7797
500 23361 20517
700 33303 29152
900 42424 38032

Depth-Q-Net will learn to predict the estimated depth at the
next step given current RGB image and proposed action.

On the other hand, a real-world experiment could even fur-
ther demonstrate the benefit of training a Depth-Q-Net over a
Coll-Q-Net as acquiring data in the real world is much more
difficult especially if it requires collisions. Unfortunately
lack of time did not allow us to include these experiments
although the simulated results already demonstrate clearly
the feasibility of our method.

Although depth-value-signals are probably not the full
solution for monocular collision avoidance, it can be inter-
esting to add in the form of intrinsic motivation for general
autonomous robots provided with a camera.

In the current work we only look at the next frame. With a
recurrent neural network more aggressive behaviors might be
learned where planning over multiple time steps is required.
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VI. APPENDIX

Training deep neural networks can be tedious. In order to
reproduce the results we share our hyperparameters. They
can also be found in the code itself on the project page:
kkelchte.github.io/depth-q-net.

• Dropout of 0.5 after the output of the Mobilenet-0.25.
• Batch size of 64.
• Weight decay of 4e-5.
• Adadelta optimizer.
• Xavier initialization.
• Ended after 1000 epochs (≈ 3h) .
Coll-Q-Net had to be trained with a lower learning rate

(0.01) than Depth-Q-Net (0.1). As mentioned in the paper,
Coll-Q-Net trained best with a cross-entropy loss and Depth-
Q-Net with an absolute difference.


