
  

  

Abstract— This paper presents an autonomous navigation 
system using only visual sparse map. Although a dense map 
provides detail information of environment, most information of 
the dense map is redundant for autonomous navigation. In 
addition, the dense map demands the high cost for storage, 
transmission and management. To tackle these challenges, we 
propose the autonomous navigation using a visual sparse map. 
We leverage visual Simultaneous Localization and Mapping 
(SLAM) to generate the visual sparse map and localize a robot 
in the map. Using the robot position in the map, the robot 
navigates by following a reference line generated from the visual 
sparse map. We evaluated the proposed method using two robot 
platforms in indoor environment and outdoor environment. 
Experimental results show successful autonomous navigation in 
both environments. 

I. INTRODUCTION 

Autonomous navigation is an essential component for a 
robot to reach a goal location. For autonomous navigation, 
dense maps have been typically used [4 - 15]. However, there 
are a couple of challenges of dense map based autonomous 
navigation. First, most points of a dense map are redundant for 
localization and navigation. Second, the dense map needs to 
be updated periodically if environment changes. Thus, high-
cost map management and computation follows and a high 
transmission bandwidth is required to update the dense map. 
Third, a large memory is needed to store the dense map as the 
map size increases. 

To tackle these challenges of dense map based autonomous 
navigation, we propose an autonomous navigation system 
using visual sparse map as shown in Fig. 1. The autonomous 
navigation system using visual sparse map has two phases; 1) 
map generation and 2) autonomous navigation. 

 
Figure 1.  Overview of autonomous navigation using visual sparse map 

In the map generation phase, color images and depth images 
from a RBG-D camera are used to generate a visual sparse map 
by Simultaneous Localization and Mapping (SLAM). As the 
visual sparse map includes only visual feature points and 
keyframes as shown in Fig. 2, the map size can be reduced 
considerably. Each visual feature point has the 3D position of 
the visual feature point. Each keyframe has 3D position and 
3D orientation.  
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Figure 2.  Example of visual sparse map (Datase I). Blue points represent 
the keyframe of the map. Green lines represent the visibility among 
keyframes. Black points represent visual feature points. 

In the autonomous navigation phase, only color images are 
used for localization. A SLAM algorithm computes the robot 
pose using a color image and the visual sparse map. Using the 
robot pose and keyframes in the visual sparse map, the 
waypoint follower computes a translation velocity and a 
angular velocity to enable the robot to follow the reference 
line, a list of keyframes in the map. 

This paper is organized as follows. Section II reviews 
related works. Section III briefly describes the SLAM 
algorithm. Section IV explains the waypoint follower. Section 
V presents experimental results and the paper is concluded in 
Section VI. 

II. RELATED WORK 

A couple of maps have been introduced for autonomous 
navigation. Metric map is one of the popular maps for 
autonomous navigation. In a metric map, positions of 
landmarks or objects in an environment are stored in a map 
with respect to a global coordinate system. Metric map can be 
classified by continuous map and discrete map [1]. While the 
former represents the environment using lines or polygons [2, 
3], the latter represents the environment using cells, points, 
Surfel, Voxel, and features. Discrete map can be classified as 
dense map and sparse map according to map density. Cell, 
point, Surfel and Voxel have been used for dense map and 
features have been used for sparse map.  

Occupancy grid map is a typical map using cells for 
autonomous navigation [4 - 6]. Each cell of an occupancy grid 
map represents whether a space is occupied by objects or not. 
A path for navigation is planned on the occupancy grid map. 
However, the occupancy grid map typically represents the 
environment in 2D space. For 3D space, a point cloud map has 
been used [6 - 10]. As the point cloud map densely represents 
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the environment as many points, the size of the point cloud 
substantially increases as the map area grows. To reduce the 
size of point cloud map, Surfel [11, 12] and Voxel [4, 13 - 15] 
are introduced. However, Surfel and Voxel still need high 
computational cost for post-processing for generating Surfel 
and Voxel. In addition, most information of the dense map is 
redundant for autonomous navigation. Thus, a sparse map has 
been proposed. 

The sparse map can be represented as features (e.g. visual 
feature descriptors) [16 - 21]. As each visual features can be 
generated from corners or blobs in the image, the number of 
visual feature points is much smaller than the number of points 
in the point cloud map. However, most works on sparse map 
have focused on mapping and localization. There has been a 
little attention for autonomous navigation using a sparse map 
[29]. Although  [29] uses a spare map generated by Harris 
corner detector, it uses a point cloud map not visual feature 
descriptors for a map. Thus, this paper presents the 
autonomous navigation system using visual sparse map.   

III. MAPPING AND LOCALIZATION 

We leverage ORB-SLAM2 [22] for building a visual 
sparse map and localization. This section gives the brief 
summary of mapping and localization of ORB-SLAM2 and 
additional methods we implement for the proposed system. 
Further details of ORB-SLAM2 can be found at [22].  

A. Mapping 
ORB-SLAM2 consists of three modules; 1) Tracking, 2) 

Local mapping, and 3) Loop closing. When a new image is 
captured, the tracking module checks if a local map is 
available. If there is no map available, a local map is 
initialized. If the local map is available, the tracking module 
predicts a relative pose between the new image and the local 
map using the motion model. If the motion model is not 
available, the relative pose is predicted using visual odometry 
with respect to the last keyframe.  If neither motion model nor 
visual odometry predicts the relative pose, relocalization 
predicts the relative pose. Relocalization finds similar 
keyframes using visual vocabulary in the map and estimates 
the relative pose to the most similar keyframe. If the relative 
pose is successfully estimated by motion model, visual 
odometry or relocalization, the relative pose is refined with the 
local map. If the relative pose of the new image is successfully 
computed, the tracking module determines if the new image is 
a new keyframe. If the number of matched points between the 
current image and the last keyframe is smaller than a threshold, 
the new image is determined as the new keyframe. 

If a new keyframe is generated by the tracking module, the 
new keyframe is added to the local map. Given the new 
keyframe, the local map module optimizes the local map using 
a local Bundle Adjustment (BA). To limit the size of the local 
map, the local map deletes redundant keyframes in order to 
maintain a compact local map. If a keyframe has 90% of the 
map points which has been seen in at least other three 
keyframes, the keyframe is determined as a redundant 
keyframe and deleted in the local map. 

Given the new keyframe, the loop closing module checks if 
the new keyframe is the revisited image. The loop closing 
module recognizes the revisited place using a place 

recognition database consisting of visual vocabulary. If the 
new keyframe is found in the visual vocabulary, the loop 
closing module optimizes the entire map using pose graph 
optimization and global BA. Otherwise, the visual vocabulary 
of the new keyframe is added to the place recognition database. 

As ORB-SLAM2 does not provide a method to save and 
load the map into a file, we implemented the method to save 
and load the map. The visual sparse map generated by ORB-
SLAM2 contains visual feature points, keyframes and a pose 
graph. Each visual feature point has the index and 3D position 
in the map. Each keyframe has the index, 3D pose and visual 
feature descriptors. The pose graph represents connectivity 
among keyframes using vertices and edges. In the pose graph, 
vertices represent keyframes and edges represent visible 
connection among keyframes.   

B. Localization 
Given the map, only the tracking module is used in the 

localization mode. The local map and the map database is not 
updated in the localization mode. In addition, the place 
recognition database is not updated. Whenever the new image 
is captured, the tracking module computes the relative pose of 
the camera with respect to the origin of the map. The camera 
pose !"	is composed of the camera position [%, ', (] and 
orientation [*+,,, -./0ℎ, '23] in the map. The coordinate of 
the map locates at the pose of the first keyframe in the map.  

IV. WAYPOINT FOLLOWER 

Using the camera pose and a reference line from the visual 
sparse map, the waypoint follower module computes the 
translation velocity and the angular velocity to control the 
robot. We assume !"  is identical to the robot pose !4 because 
the reference line is generated with assuming !"  is identical to  
!4. When a new image is captured, !4 is computed by the 
tracking module of ORB-SLAM2.  

The reference line is generated from the map. The reference 
line is represented as the list of the keyframe positions 

                       54 = {!8, !9 … , !;<9, !;}                       (1) 

where !; = [%, ', (] is the >?@ keyframe position in the map. 

If !4 is successfully computed by the tracking module, the 
nearest keyframe !A from !4 is founded in 54. A keyframe 
ahead with a pre-defined distance from !A is determined as a 
temporary target waypoint !B . Transitional difference CD and 
angular difference ED between !4 and !B  can be  computed by 

                                    CD = 	‖CB −	C4‖                               (2) 

                                    ED = 	 |EB −	E4|                               (3) 

Where CB = [%, ', (] and C4 = [%, ', (] are robot positions at 
the target waypoint and the current position respectively. EB  
and E4 are orientations of the robot at target waypoint and 
current position respectively in 2D space. 

To control the robot, we computes the translational velocity 
IB  and the rotational velocity IJ by 
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                                       (5) 

 

where LM is the desired maximum translational speed of the 
robot. E@ is a threshold of angular difference for reducing IB .  
If ED is larger than E@, IB  is reduced by half.  ] is an empirical 
coefficient for computing IJ using ED. 

V. EXPERIMENTAL RESULTS 

We evaluated the proposed autonomous navigation system 
using Robotis Turtlebot 2 [23] with Orbbec Astra Pro [24] in 
indoor environment and Clearpath Husky [25] with Logitech 
C920 Pro [26] in outdoor environment.  

A. Experimental platforms 

 We installed one RGB-D camera, Orbbec Astra Pro, on 
the Turtlebot in indoor environment as shown in Fig. 3. 
Orbbec Astra Pro has a resolution of 640 ´ 480 pixels in 
both a color image and depth image. 

 
Figure 3.  Robotis Turtlebot 2 with Orbbec Astra Pro for indoor 
environment 

As the RGB-D camera is not working in outdoor 
environment, we use Logitech C920 Pro instead of Orbbec 
Astra Pro. We use only 640 ´ 480 color images for both 
mapping and localization in outdoor environment. In 
addition, we use Clearpath Husky for safe and robust 
mobility in outdoor environment as shown in Fig. 4. The 
autonomous navigation systems in both robot platforms are 
built on ROS [27]. 
 

 
Figure 4.  Clearpath Husky with a Logitech C920 for outdoor environment 

B. Localization accuracy with Map data 
We evaluated localization accuracy with map data before 

evaluating autonomous navigation. We use the same map data 
for evaluating localization accuracy. However, we use only 
color images for localization while both color images and 
depth images are used for building a map in indoor 
environment. 
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                    (d)                                   (e)                                 (f) 

Figure 5.  Snapshots of offices and hallway for datasets in indoor 
environment. (a) office A, (b) hallway between office A and elevator, (c) 
elevator at the end of hallway, (d) glass door to office B, (e) narrow gate to 
office B and (f) office B. 

We collected three datasets in office environment as shown 
in Fig. 5. The first dataset is collected in office A which 
includes desks, chairs and shelves. The robot starts near the 
first shelf and returns to the start position. The second dataset 
is collected in Office A and a hallway. The robot starts from 
Office A, runs along the hallway and stops in front of an 
elevator at the end of the hallway. The third dataset is 
collected in Office A, the  hallway and Office B. The robot 
starts from Office A, runs along the hallway and stops at 
Office B. There is a 1 meter-wide narrow gate between the 
hallway and Office B. Table I shows the path length and 
environment of each dataset. Fig. 6 shows maps and 
trajectories of dataset II and III. The map and trajectory of 
Dataset I is shown in Fig. 2.  

TABLE I.  DATASETS IN INDOOR ENVIRONMENT 

Dataset Length [m] Environment 

I 17.41 Office A 
II 41.38 Office A, hallway 
III 49.40 Office A and B, hallway 

 
 



  

  
               (a) Dataset II                                  (b) Dataset III 

Figure 6.  Maps and trajectories in Dataset II and III  

Table II shows the localization error with map datasets. 
Although the same map dataset is used for evaluating 
localization accuracy, the average Root Mean Square Error 
(RMSE) is 0.031 meter because ORB-SLAM2 randomly 
generates visual features from a color image for localization. 
However, the average RMSE is acceptable for autonomous 
navigation because the minimum width of path is 1 meter. 
Fig. 7 shows map and localization trajectories on dataset I. As 
RMSE is 0.036 meter, the localization trajectory overlays the 
map trajectory. 

TABLE II.  LOCALIZTION RMSE WITH MAP DATA 

Dataset RMSE [m] 

I 0.036 
II 0.03 
III 0.03 

Average 0.031 
 

We also evaluated localization accuracy in environment 
changes because the environment can be changed after 
generating the map. We changed about 30% of objects in the 
same place in dataset I and collected a new dataset for 
evaluating localization. Given the map generated from dataset 
I, localization RMSE is 0.116 ± 0.111 meter [mean ± standard 
deviation]. Although environment changes increase 
localization RMSE slightly, the RMSE in environment 
changes is still acceptable for autonomous navigation.  
 

TABLE III.  LOCALIZTION RMSE IN AUTONOMOUS NAVIGATION 

Dataset RMSE [m] 

I 0.065 ± 0.045 

II 0.166 ± 0.127 
III 0.117 ± 0.075 

Average 0.116 ± 0.082 
 
 

 
Figure 7.  Map and localization trajectories with Dataset I. Red line 
represents the map trajectory and blue line represents the localization 
trajectory. 

C. Localization accuracy in autonomous navigation 
We evaluated localization error when the robot runs in the 

autonomous navigation phase. The waypoint follower enables 
the robot to follow a reference line as close as possible. We 
compute the localization error by finding the closest waypoint 
from the estimated position by ORB-SLAM2 localization as 
shown in Table III. 

 

 
               (a) Dataset I                       (b) Dataset II            (c) Dataset III 

Figure 8.  Map and localization trajectories in autonomous navigation. Red 
lines represent trajectories of maps and bule lines represent trajectories of 
localization. 

Experimental results show that: 1) the average localization 
RMSE is 0.116 ± 0.082 meter [mean ± standard deviation]; 
2) the robot successfully navigates in three different 
environments even there are challenge environments such as 
a feature-spare long hallway (length: 25 meter) and the 1 
meter-wide narrow gate; 3)  there are relatively larger error 
when the robot turns; 4) the feature sparse long hallway 
increases localization error. Fig. 8 shows map and localization 
trajectories in autonomous navigation. 

D. Environment changes in outdoor environment 
We evaluated localization error with environment changes 

in outdoor environment. Datasets are collected along the 



  

sidewalk around JD.com office, Santa Clara, California, 
USA. The path consists of straight, curved and winding 
sidewalks under trees as shown in Fig. 9.   
 

    
                (a)                        (b)                         (c)                        (d) 

Figure 9.  Snapshots of outdoor environment. (a) start position, (b) curved 
sidewalk, (c)  winding sidewalk and (d) goal position.                         

The map dataset is collected at 15:04 on December 13, 
2017.  The path length of the map is 114.70 meter. We 
collected six datasets as shown in Table IV: 1) dataset IV to 
VII are collected at different time in sunny days; 2) dataset 
VIII is collected in a cloudy day;  3) dataset IX is collected in 
a rainy day. 

TABLE IV.  LOCALIZATION ANAYSIS WITH ENVIRONMENT CHANGES IN 
OUTDOOR ENVIRONMENT 

Dataset Weather Date/Time 
Failure  

ratio 

Failure time [sec] 

Max Mean Std. 

IV Sunny 2018-01-19-09-57-51 48% 36.15 1.55 4.29 

V Sunny 2018-01-11-14-12-09 10% 0.57 0.22 0.13 

VI Sunny 2018-01-12-15-32-45 3% 0.33 0.07 0.06 

VII Sunny 2018-01-12-16-51-56 12% 2.40 0.44 0.52 

VIII Cloudy 2018-01-17-11-39-49 17% 3.43 0.99 1.30 

IX Rainy 2018-01-03-11-40-42 12% 9.80 0.55 1.30 

 
We use two metric, failure ratio and failure time, for 

evaluating localization performance. Failure ratio is the ratio 
of localization failure over all localization tries. Failure time 
is the time from the localization failure to the next localization 
success. As the dataset is collected by manual driving, 
localization accuracy is not evaluated.  

As shown in Table IV, experimental results show that: 1) 
dataset VI has the smallest failure ratio because dataset VI is 
collected at similar time and weather to the map; 2) dataset IV 
has the largest failure ratio because the illumination of dataset 
IV is quite different from the map due to the position of the 
sun; 3) failure time has proportional relationship with failure 
ratio in sunny day but the proportional relationship between 
failure ratio and failure time is not valid in the rainy day and 
the cloudy day; 4) in the rainy day, failure time is larger than 
the cloudy day while failure ratio is smaller than the cloudy 
day. Fig. 10 shows trajectories of map and localization in 
dataset IV, VI, VIII and IX. 
 

  
                  (a) dataset IV                                          (b) dataset VI 

 
                   (a) dataset VIII                                       (d) dataset IX 

Figure 10.  Map and localization trajectories with environment changes in 
outdoor environment. Red lines represent trajectories of maps and bule stars 
represent positions of successful localization. 

 
E. Autonomous navigation in outdoor environment 

As mentioned in the previous section,  ORB-SLAM2 is not 
robust at different time and different weather in outdoor 
environment. Thus, we evaluated autonomous navigation at 
15:02 on January 11, 2018, a sunny day, which is similar time 
and weather to the map.  

Experimental result shows the robot ran successfully on the 
sidewalk and localization RMSE is 0.246 ± 0.151 meter 
[mean ± standard deviation]. The width of sidewalk is about 
1.5 meter. Fig. 11 shows trajectories of map and localization 
in autonomous navigation. We note that the robot is rarely 
localized in the curved sidewalk because most visual features 
come from the distant objects.  
 

 
Figure 11.  Map and localization trajectories in autonomous navigation in 
outdoor environment. Red line represents trajectories of map and bule stars 
represents positions of successful localization. 

VI. CONCLUSION 
We proposed an autonomous navigation system using only 



  

visual sparse map for indoor environment and outdoor 
environment. ORB-SLAM2 is used for mapping and 
localization. Waypoint follower enables the robot to follow 
the reference line. We evaluated the proposed system in 
indoor environment and outdoor environment using two robot 
platforms.  

Experimental results show that: 1) localization errors with 
the map datasets are acceptable for the robot to run 
autonomously indoor environment; 2) the robot successfully 
ran in three indoor environments including environment 
changes; 3) environment changes in outdoor apparently 
increases  localization failure ratios; 4) the robot successfully 
ran in similar time and weather to the map in outdoor 
environment.  

We will investigate for robust localization with 
environment changes in outdoor environment. In addition, 
sensor fusion with  additional sensors such as IMU, GPS and 
Lidar will be investigated. We will also extend the proposed 
system by including obstacle avoidance and path planning. 
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