
An Egocubemap Based Algorithm for Quadrotors
Obstacle Avoidance Using a Single Depth Camera

T. Tezenas Du Montcel∗, A. Nègre∗, M. Muschinowski∗, E. Gomez-Balderas∗ and N. Marchand∗
∗Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France

Abstract—A fast obstacle avoidance algorithm is a necessary
condition to enable safe flights of Unmanned Aerial Vehicles
(UAVs) eventually at high-speed. Large UAVs usually have a lot
of sensors and available computational resources which allow
complex algorithms to run fast enough to navigate safely. On the
contrary, small UAVs gather many difficulties, like computation
and sensors limitations, forcing algorithms to retain only a
few keys points of their environment. This paper proposes
an obstacle avoidance algorithm for quadrotor using a single
depth camera. Taking advantage of the possibilities offered by
embedded GPUs, a cubic world representation centered on the
robot - called Egocubemap - is used while the whole obstacle
detection and avoidance algorithm is light enough to run at
10Hz on-board. Numerical and experimental validations are
provided.

I. INTRODUCTION

For some years now, the increase of interest for autonomous
navigation of Unmanned Aerial Vehicles (UAVs) has led to
the development of many autopilot systems. In order to make
a safer one, an avoidance layer is needed under its global
navigation control scheme. This is especially true in crowded
environments, where the dangerousness of these systems is a
big obstacle to concrete applications.

Autonomous obstacle avoidance for UAVs, generally, and
quadrotors, especially, is not particularly new [1, 2]. For its
simplicity and its low cost, lots of existing works, including
ours, focus on a single looking-ahead passive depth sensor [3, 4]
which raises three major issues. First, the range of the depth
information of those sensors is limited to, typically, distances
of 10 meters. Secondly, the angular region of space in which we
have depth information is limited to the Field Of View (FOV)
of the sensor. Thirdly, whether we use an RGBD camera or
whether we apply a stereo-vision algorithm to a pair of stereo-
vision images, the extracted depth map is more noisy than a
LIDAR point cloud. Those three issues need to be addressed
somehow.

The main way to solve the range issue is to have a high
frequency obstacle avoidance algorithm to check for obstacles
as soon as they enter the perception range. This solution also
allows to fly fast with a limited input depth range [3]. We
consider that reaching a frequency of 10Hz is the minimum
to allow avoidance at high speed and to give ourselves a chance
when considering moving obstacles.

The reduced FOV issue is usually addressed with some kind
of onboard memory of the environment. Closely following the
idea of Brockers et al. in [5] who presented an Egocylinder
type of vision, a cubic world representation centered on the

drone - called Egocubemap - is used in this paper to map the
environment.

Finally, the lack of precision of the depth map is addressed
by implementing a Configuration Space expansion (C-Space)
[6] and adding a margin to it. The idea of a C-space expansion
is to enlarge any object of the environment by a volume V . At
any position in the C-Space expanded environment, it becomes
possible to check if there are collisions between the volume
V and the environment only by verifying if the center of
the volume is occupied by an obstacle. If the chosen volume
includes a body, it is therefore possible to check for collisions
between this body and the environment in a single operation.
Adding a margin in the volume V of the C-Space and making it
include the body plus some extra-space will ensure that, if there
is no collision in the C-Space, the body is at least at this margin
from any obstacle. By adding a margin linked to the error in the
depth map, the lack of precision of the depth map will have a
reduced impact.

The rest of the paper is organized as follows. In Section II a
short review of existing works is given. Section III presents the
main contribution of the paper, that is the proposed algorithm.
In Section IV, the results obtained during more than 100 km of
simulated flight are given. Section V presents the experimental
validation in the context of an hardware in the loop implementa-
tion. A real UAV is flying and its position obtained by a motion
capture system enables us to make it fly in a virtual simulated
environment with fictive obstacles. The obstacle avoidance
algorithm then runs based on the simulated images. The paper
ends with some conclusions and perspectives.

II. RELATED WORKS

Obstacle avoidance consists in a set of functions. If those
functions can change depending on the algorithm, two of
them are always necessary: creating a world representation
from the depth inputs and generating trajectories or direct
control commands of the robot. We briefly spoked about other
existing avoidance algorithms in the introduction, in this part
we will focus on those two important functions of an obstacle
avoidance algorithm.

For world representation, there are multiple possibilities.
From the simplest one, taking only the raw depth sensor
data at the current frame, to the most complex, 3D mapping
with SLAM techniques, there is the possibility to keep in
memory only a few key points [3, 4], to build a 2D 360◦ depth
representation [5] or to use odometry techniques. There is
obviously a tradeoff to find between the computational cost of



a spatial representation and its precision. This is why most of
the fastest obstacle avoidance algorithms are keeping only a
few key points in memory. In [4], Barry even reduced its stereo
algorithm to a single distance pushbroom stereo-vision in order
to reduce his processing time. Our goal is to have at least a
360◦ representation of the world while still running above
10Hz onboard a quadrotor which weights less than 1 kg.

For the trajectory generation, there are two main possibilities
which are to generate the trajectories on-line or to generate
off-line a library of trajectories and to pick one among
them on-line. In both cases, trajectories can be linked to a
corresponding control to apply on the robot either in open-loop
or by implementing some closed-loop control to track it.

In order to generate some trajectories beforehand, it is
necessary to discretize the state-space of the quadrotor, and
then to generate trajectories for each of the discretized states
that allow the quadrotor to go in different directions [7].
Relying on a precise model of their quadrotor, some works
even focused on the uncertainty of the generated trajectories
[8].

Generating trajectories on-line has one main drawback
which is that the generation must be very fast (typically less
than a millisecond) in order to be able to generate more than
one trajectory and to leave time for the rest of the process.
With a precise model, one of the fastest method still uses
2ms to generate a 500ms trajectory [9]. It therefore means
that it is mandatory to use a simplified model to generate the
trajectories. Historically, on-line trajectories have consisted on
steering commands or geometric trajectories. Then, Mellinger
& Kumar in [10] introduced a method using the differential
flatness of the quadrotors which has become the new standard
for on-line trajectory generation. Recently, [11] added to a
flatness based generation a few efficient tests to check the
compatibility of the generated trajectory with a quadrotor
dynamic. Due to the constraints of our project which aims
at developping a generic, ’plug and play’ and working for a
wide range of quadrotor, algorithm, we have to generate our
trajectories online which is why we adpoted the method from
[11].

III. DESCRIPTION OF THE ALGORITHM

The goal is to reach Wi ∈ R3×n, i ∈ [1, n] an ordered
list of n high level way-points according to the sequence of
the ordered list. We consider a way-point Wi reached when the
distance between it andX(t) ∈ R3, the cartesian position of the
quadrotor at time t, is inferior to µi ∈ R+, a distance parameter
depending on the precision needed by the high level navigation.
If no path to a way-point is found, the avoidance algorithm is
expected to search for one for 10s before asking the navigation
layer for a new high level way-point.

A. Overview of the algorithm

Figure 1 represents the main steps of the proposed algorithm
which runs at each new depth acquisition. Its starting point is
the depth map acquisition. Many kind of sensors can provide
data that are or can be transformed into depth maps. With

Fig. 1. Overview of the algorithm

stereo-vision cameras, this transformation step consists in run-
ning a stereo-vision algorithm, whereas with a direct depth sen-
sor like laser sensors, this step is straightforward. The second
step of the algorithm is the construction of the Egocubemap. It
starts by the estimation of the displacement between the last
two frames. Then an ego centric cubic representation of the
environment, the Egocubemap itself, is computed. Finally, it
ends with the C-space expansion, which consists in increasing
the volume of each depth measure to face unprecise and non
dense depth maps. This representation of the environment is the
first step to figure out how the next way-point can be reached
without colliding with the obstacles. For that purpose, a new
frame-specific goal, that may not coincide with the position
of the way-point in the frame, is computed. In that frame,
trajectories reaching that goal or a neighbourhood of it are
generated. Among them, we select the “best” one that will be
given as input to the closed loop controller of the quadrotor. The
following subsections explain those steps in more detail.

B. Egocubemap Construction

The Egocubemap is a world representation shaped in a cube
and centered on the quadrotor. Each pixel of the Egocubemap
stores the distance from the quadrotor to the closest obstacle
in its direction. It is a light dense 360Â◦ representation of the
world. Its construction is as follows:

At each new frame, the ego motion between the last used
frame and the new one is estimated. To do so, we use a
keyframe-based dense visual odometry mixing the real-time
visual odometry from dense RGB-D images detailed in [12]
while adding the keyframe feature proposed in [13]. Once the
motion is estimated, we move the old Egocubemap according to
it. Each pixel from the previous Egocubemap is back projected,
displaced from the reverse motion and reprojected to the new
estimated Egocubemap. In this step, each pixel is considered
as the rectangular area between its corner coordinates in order
to have a dense output. There is necessarily some overlapping
during the reprojection on the new Egocubemap, which is why



a Z buffer test mechanism is used to keep only the closest depth
per pixel.

The new depth data coming from the sensor is then added to
the estimated Egocubemap by overwriting the old data with the
newly acquired one.

Finally a spheric C-space expansion is applied which means
that all the pixels, considered as obstacles, are enlarged by a
sphere. We chose to use a spheric C-Space despite the nearly
planar volume occupied by a quadrotor considering that it will
tilt in space during the flight. Using a sphere allows to check
for collisions without the need to recompute the quadrotor
angle at each point of the trajectory. To build the C-Space,
each pixel is considered as a single point, back projected and
enlarged to a sphere. The smallest rectangle overlapping the
sphere in the direction of its center is computed (see Figure 2)
and reprojected.

Fig. 2. C-Space reconstruction

The idea behind the C-Space is to check the quadrotor
trajectories as its center trajectory instead of the sum of the
trajectories of all its components. By reducing the needed
checks to only a point instead of a volume at each point of
each tested trajectories, we will be able to fasten the checks and
therefore to check more trajectories at a reduced cost. 3.a and
3.b are two consecutive planar projections of the Egocubemap
enlarged by the C-space.

(a) (b)

Fig. 3. (a) and (b) show two spherical projections of two successive
Egocubemaps with Configuration Space

C. Frame-Specific Goal Computation
At this point, we have a representation of our environment,

the quadrotor corresponding state and the high level way-
point Wi we currently want to reach. We need to define more
precisely where we want to go at this specific frame. To do
so, we define a new frame-specific goal G. If a trajectory has
been defined on the previous frame, the frame-specific goal G
is the mean point between the end position of the trajectory and
the way-point Wi. By using the previous trajectory in the new
goal definition, we stabilize the direction in which we are going
and avoid some instabilities in this direction. If no previous
trajectory was defined, the frame-specific goal G is simply the
high level way-point Wi.

D. Directions Preselection

Now knowing this frame goal G, we select some directions
which could potentially lead closer to this goal. To do so,
we first truncate the Egocubemap to the distance between our
quadrotor and G. We then compute the distance between each
point of this truncated Egocubemap and G and finally, among
the closest points of the truncated Egocubemap to G, we ran-
domly pick a hundred points El. The severity of the restriction
on the closeness to G creates a trade off between converging
to the frame specific goal and obtaining some diversity in the
directions to find at least one path compatible with the flight
dynamic.

E. Trajectory Generation

The previously selected points give a hundred different di-
rections that are potentially interesting to reach the goal G and
the high level way-pointWi, but we now need to verify how far
it is possible to reach in those directions without colliding with
the environment. By generating quadrotor feasible trajectories
at multiple distances on those directions and projecting them
on the Egocubemap, we will be able to check for collisions.
To generate the trajectories, we are using the motion primitive
generation proposed by Mueller et al. [11]. This method is a
trade off between purely geometric methods and dynamically
very accurate methods. It creates quadrotors feasible trajecto-
ries with the assumption that angular rate commands are tracked
perfectly, an assumption which is obviously not exact but from
which we are not very far considering the low angular inertia of
a quadrotor.

Mueller et al. choose the trajectory as the one that minimizes
their cost function, which is the integral of the squared jerk
on the trajectory for a given input state, output state and time
between those two states. To guarantee the feasibility, it is
checked that the required thrust and angular velocity to follow
the trajectory are reachable by the quadrotor. Since Mueller
et al. found an expression of the minimum of this cost function,
this method is really fast and allows the generation of almost a
million primitives per second.

It is also worth noting that the cost function can be seen as an
upper bound on the average of a product between the thrust and
the angular velocity and that it reflects the dynamic difficulty of
the trajectory. Therefore, it is interesting to define trajectories
that have the same cost because we can expect the precision of
the control on those trajectories to be pretty similar. Even if it
is not possible to define a cost directly using Mueller et al.’s
method, it is still possible to find trajectories with a precise cost
using a binary search on the time since the cost depends solely
on it for defined input and output states.

In order to avoid obstacles for each of the 100 preselected
directions, we try to reach El for a few different costs Cm.
The lowest cost corresponds to the targeted flight dynamics
and the highest cost is chosen at the limit of the quadrotor
dynamics in case of emergency. If we can reach El at Cm

without collision, we generate the next trajectory which is either
the same goal El with a lower cost or a next goal. If we
noticed a collision during the projection of the trajectory on
the EgoCubemap, we try to reach a new point Eln at the same
cost Ci. This point is in the direction of the point El but at



Fig. 4. View of a 2D (100 vertical cylinders) and a 3D (90 vertical or
horizontal cylinders) simulated test

a distance reduced by a 0.75 factor. We repeat this operation
until ‖Eln − X(tk) < min dist‖, with min dist being the
minimum distance of forward progress which depends on the
distance between the quadrotor and the frame specific goal.

Finally, all the generated trajectories include a null velocity
and acceleration in their final state. This ensures that the last
trajectory given to the control will always be a safe one if a
hardware failure was to happen. Adding this and the perception
limit of 10m creates a velocity limit for the quadrotor for a
defined cost. This limit is the one that allows the quadrotor to
stop from this initial velocity to a null velocity in 10m for a
particular cost. In the following, those velocity limits will be
used to characterize the different targeted trajectory cost.

F. Best trajectory Selection

For all obstacle-free generated trajectories, we select the best
trajectory TrajBest as a trade off between the trajectory cost
CTrajl and the distance from its final state position FTrajl
to the local goal Gk with more emphasis on the distance :

∀ l 6= Best,
CTrajBest

CTrajl
∗
(
‖Gk − FTrajBest‖
‖Gk − FTrajl‖

)2

< 1 (1)

In a few cases, we might not find any valid trajectory. This
can mainly happen for 2 reasons : an obstacle is closer than
min dist or it is impossible to avoid the impact with a newly
detected object (in case of a dynamic object for example). If
no valid trajectory exists, we issue a stop command which is
treated in a specific way by the controller in order to stop the
UAV as fast as possible.

G. Trajectory Tracking

In order to keep our system ”plug and play”, we use the most
common control scheme for quadrotors: a cascade controller.
From the trajectory, we use the desired position, velocity and
yaw to feed a first PID in position which outputs an acceleration
command on the X , Y , Z axes and the desired yaw rate. Using
the quadrotor dynamics, the accelerations are converted into the
desired thrust, pitch and roll. Those are then fed to a second
PID in angle which outputs a pitch rate and a roll rate. The
command, which now consists of a thrust, a pitch rate, a roll
rate and a yaw rate, can then be mathematically converted into
the power needed in each rotor. This control scheme has not
been designed to track trajectories and creates errors during
the tracking, but it is the most common one. In our project,
we wanted to show that even using this control scheme, our
algorithm allows to efficiently avoid obstacles. We also keep
this control scheme when we issue a stop command but we
nullify the proportional term of the PID in position.

H. Computing Time

We implemented all the image processing steps on an embed-
ded GPU card using Cuda and OpenGL. The motion estimation
takes 15ms on an NVIDIA Jetson-TX1, our processing card
for onboard computations, while the rest of the process, for
a 128×128×6 cubemap, takes 35ms on the same card. All
the trajectory related steps take less than 20ms on a single
CPU core@3.0GHz and less than 55ms on an NVIDIA Jetson-
TX1. The control scheme takes less than 1ms on both device.
Hence in total the algorithm takes less than 70ms on a ground
station and less than 105ms on an NVIDIA Jetson-TX1. Since
we worked only using a ground station, and since we were
already above 10Hz on our ground station, there has been
no emphasis on improving the performances of the algorithm,
especially for all the trajectory related steps. By parallelizing
the trajectory related steps, whether on the GPU or on the
CPU, we feel confident about reaching 10Hz performances
on an NVIDIA Jetson-TX1, thus enabling real-time aggressive
motion planning.

IV. SIMULATION

A. The Setup

We decided to work with ROS since it is very widely used
and allows easily to exchange packages in the same ”plug and
play” spirit that we followed. The use of the Gazebo simulator
was then pretty straight forward considering that it had all the
features we needed and the quality of its ROS integration.

We are using a simulator based on the fcu sim ROS package
from BYU-MAGICC. This package offers Gazebo/ROS sen-
sors plug-ins and a quadrotor dynamics simulator. The idea
of this simulator is to define the quadrotor as a simple 6DOF
rigid body on Gazebo and then to add the forces, torques and
saturations that differ between a quadrotor and a 6DOF rigid
body of same mass and inertia as described in [14].

Our simulated quadrotor has a radius of 0.5m, weights
3.52 kg. This quadrotor is around five times heavier and two
times larger than the one we will use when doing real hardware
experimentations, but our algorithm is supposed to be scalable
and we did not want to change the native model which would
have probably led to more approximation on the modeling.

The tests have been designed so that the previously defined
quadrotor travels 100m in an unknown environment filled with
randomly positioned obstacles. The obstacles consist in 16cm
radius cylinders which cross the whole scene in specific axes.
The tests are run 100 times with different maximum velocities
and obstacle number which means that the quadrotor flies at
least 10 km in each configuration. Taking into account the fact
that, in the earth frame, the quadrotor dynamics on the Z axis
are different from the dynamics on the X and Y axes, which
are similar due to symmetries, we designed two different tests.
The first one involves only theX and Y axes (2D test) while the
other one involves all three axes (3D test). The only difference
between both tests is the direction of those cylinders which is
only along the Z-axis in the 2D case and which is along the X ,
Y or Z axes in the 3D test. On Figure 4 are represented specific
configurations of a 2D and a 3D test with respectively 100 and
90 cylinders.



Test directions 2D 2D 2D 3D 3D 3D
Obstacle Number 50 100 150 30 90 150

Max Velocity: 3,3 m/s
Collisions/km 0.0 0.1 0.8 0.0 0.1 0.3

Max Velocity: 5 m/s
Collisions/km 0.1 0.4 0.7 0.0 0.1 1.0

TABLE I
RESULTS OF THE TESTS IN SIMULATION USING THE SIMPLE MODEL.

B. Results
Figure 5 is a view from above of the quadrotor trajectory

from a typical case of a test with 100 vertical (2D test)
cylinders.

Fig. 5. A view from above of the quadrotor trajectory during a simulated
2D test with 100 cylinders. In green, the quadrotor trajectory. In blue, the
trajectories generated each time the avoidance algorithm is called.

Table I gives the results of the different configurations tested
in our simulated environment. The different maximum veloci-
ties have been defined depending on the time horizon of the per-
ception of the quadrotor. With a 3.33ms−1 maximum velocity,
given a 10m max depth perception, the time horizon is at least
3 s. That duration is reduced to 2 s with a 5ms−1maximum
velocity. The C-Space radius was 70cm which constitutes a
margin corresponding to 40% of the quadrotor radius.

There are two main results :
• Reaching very low or null errors in multiple cases, even in

very crowded environments, validates our choices while
building the algorithm.

• In the very crowded 2D 150 obstacles environments, our
algorithm get stuck in local minimums. In all cases, the
quadrotor stops in front of the obstacles during 10s, as
expected, after which it could be tasked to land.

V. EXPERIMENTAL VALIDATION
A. The Setup

The experimental validation was carried out on a homemade
quadrotor represented on Fig. 6. It weights 303g and has a 33cm

Fig. 6. A photo of our custom quadrotor

diameter including its 5” blades. It embarks brushless motors, a
NAZE32 flight controller flashed with ROSflight [15] and it is
powered by a 7.4V LIPO battery. The NAZE32 IMU was used
to feed the ROSflight attitude controller and we used a motion
capture system (MOCAP) to feed the avoidance algorithm and
the position controller on the quadrotor state.
For the tests, all the avoidance related computations are done
on a ground station. Embedding a NVIDIA Jetson-like process-
ing card for onboard computations would necessitate a bigger
frame, which is impossible in our motion capture room which
useful volume is a 3m×2.5m×2m cuboid. The quadrotor is not
equipped with any depth sensor. To provide such measurements
to the quadrotor, a virtual clone of the quadrotor, with the same
position and orientation as the real one in the MOCAP room,
evolves in a Gazebo world. A depth image can then be created
in this virtual environment. Virtual obstacles or clones of the
real ones can be added to this world. Due to the limited size of
the MOCAP volume compared to the quadrotor size, we could
only create a scene with 6 or less cylinders. As in simulation,
the cylinders are randomly spawned.

B. Results

Figure 7 is a summary from above of an hardware-in-the-
loop test with 6 cylinders.

Fig. 7. A view from above of the quadrotor trajectory from a hardware-in-
the-loop test with 6 vertical cylindrical obstacles. In green, the quadrotor
trajectory. In blue, the trajectories generated each time the avoidance
algorithm is called



Table II gives the results of the hardware in the loop tests.

Test directions 2D 2D 2D
Max Theorical Velocity 3.3 m/s 5 m/s 3.3 m/s
Number of obstacles 4 4 6
Number of tests 10 10 10
Successful tests 10 10 10

of which local minimum stops 1 2 3
TABLE II

RESULTS OF THE HARDWARE IN THE LOOP TESTS

Due to the size limitation of the MOCAP room, we were
only able to test with a maximum of 6 vertical obstacles. Even
with this few obstacles, 20% of the tests ended in a local
minimum but it’s worth noticing that the quadrotor correctly
hovered, waiting for a new high-level waypoint. Also, since
the algorithm has a zero velocity and acceleration constraint
at the end of each generated trajectory, because of the size
limitation of the MOCAP room and the short trajectories, the
maximum velocity of the quadrotor was never above 1m/s
despite theoretically being able to go above it in the tested
configurations. Testing it in larger environment will increase
the velocity of the quadrotor and is clearly the next step we
have to take. Despite this limitation, the algorithm reacted as
expected during those flights and there have been only a few
differences between the simulated results and the hardware-in-
the-loop ones. The main difference resides in the quality of the
trajectory tracking. Even at those low velocity, the cascade PID
scheme shows some of its limit due to an 80ms latency in the
loop. We expect this delay to be reduced in a fully embedded
scenario and therefore an improvement of the control.

VI. CONCLUSIONS

We presented an obstacle avoidance algorithm solely based
on a single facing ahead depth input with a field of view
corresponding to what is expected from a pair of stereo vi-
sion cameras. Using an Egocubemap world representation,
we successfully and consistently avoided obstacles whether in
simulation or in a hardware-in-the-loop setup and in differently
crowded environments. Our next step will be to attempt outdoor
and fully embedded flights with our algorithm.

Due to the uniqueness of the tests of each published paper,
comparing our results to other existing works is also really
complicated at the moment. In order to make this easier, we
are currently creating an avoidance benchmark. We believe that
it could help highlighting on the strengths and weaknesses of
each approach.

VII. ACKNOWLEDGMENT

This work is founded by the CAP2018 project.

REFERENCES

[1] S. Scherer, S. Singh, L. Chamberlain, and M. Elgersma,
“Flying fast and low among obstacles: Methodology
and experiments,” The International Journal of Robotics
Research, vol. 27, no. 5, pp. 549–574, 2008. [Online].
Available: https://doi.org/10.1177/0278364908090949

[2] S. Hrabar, “3D path planning and stereo-based obstacle
avoidance for rotorcraft UAVs,” in 2008 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
Sept 2008, pp. 807–814.

[3] H. Oleynikova, D. Honegger, and M. Pollefeys, “Reactive
avoidance using embedded stereo vision for mav flight,”
in 2015 IEEE International Conference on Robotics and
Automation (ICRA), May 2015, pp. 50–56.

[4] A. J. Barry, “High-speed autonomous obstacle avoid-
ance with pushbroom stereo,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, 2016.

[5] R. Brockers, A. Fragoso, B. Rothrock, C. Lee, and
L. Matthies, “Vision-based obstacle avoidance for mi-
cro air vehicles using an egocylindrical depth map,”
in International Symposium on Experimental Robotics.
Springer, 2016, pp. 505–514.

[6] T. Lozano-Perez, “Spatial planning: A configuration space
approach,” IEEE transactions on computers, no. 2, pp.
108–120, 1983.

[7] S. Daftry, S. Zeng, A. Khan, D. Dey, N. Melik-
Barkhudarov, J. A. Bagnell, and M. Hebert, “Robust
monocular flight in cluttered outdoor environments,”
arXiv preprint arXiv:1604.04779, 2016. [Online].
Available: https://arxiv.org/pdf/1604.04779.pdf

[8] A. Majumdar and R. Tedrake, “Funnel libraries for real-
time robust feedback motion planning,” The International
Journal of Robotics Research, vol. 36, no. 8, pp. 947–
982, 2017. [Online]. Available: https://doi.org/10.1177/
0278364917712421

[9] M. Neunert, C. de Crousaz, F. Furrer, M. Kamel,
F. Farshidian, R. Siegwart, and J. Buchli, “Fast nonlinear
model predictive control for unified trajectory optimiza-
tion and tracking,” in 2016 IEEE International Confer-
ence on Robotics and Automation (ICRA), May 2016, pp.
1398–1404.

[10] D. Mellinger and V. Kumar, “Minimum snap trajectory
generation and control for quadrotors,” in 2011 IEEE
International Conference on Robotics and Automation,
May 2011, pp. 2520–2525.

[11] M. W. Mueller, M. Hehn, and R. D’Andrea, “A com-
putationally efficient motion primitive for quadrocopter
trajectory generation,” IEEE Transactions on Robotics,
vol. 31, no. 6, pp. 1294–1310, Dec 2015.

[12] F. Steinbrücker, J. Sturm, and D. Cremers, “Real-time vi-
sual odometry from dense RGB-D images,” in 2011 IEEE
International Conference on Computer Vision Workshops
(ICCV Workshops), Nov 2011, pp. 719–722.

[13] C. Kerl, J. Sturm, and D. Cremers, “Dense visual SLAM
for RGB-D cameras,” in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Nov 2013,
pp. 2100–2106.

[14] R. C. Leishman, J. C. Macdonald, R. W. Beard, and T. W.
McLain, “Quadrotors and accelerometers: State estima-
tion with an improved dynamic model,” IEEE Control
Systems, vol. 34, no. 1, pp. 28–41, Feb 2014.

[15] J. Jackson and D. Koch, “ROSflight,” 2016. [Online].
Available: http://rosflight.org/

https://doi.org/10.1177/0278364908090949
https://arxiv.org/pdf/1604.04779.pdf
https://doi.org/10.1177/0278364917712421
https://doi.org/10.1177/0278364917712421
http://rosflight.org/

	I INTRODUCTION
	II RELATED WORKS
	III DESCRIPTION OF THE ALGORITHM
	III-A Overview of the algorithm
	III-B Egocubemap Construction
	III-C Frame-Specific Goal Computation
	III-D Directions Preselection
	III-E Trajectory Generation
	III-F Best trajectory Selection
	III-G Trajectory Tracking
	III-H Computing Time

	IV SIMULATION
	IV-A The Setup
	IV-B Results

	V EXPERIMENTAL VALIDATION
	V-A The Setup
	V-B Results

	VI CONCLUSIONS
	VII Acknowledgment

