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Abstract— Relative localization between autonomous vehicles
is an important issue for accurate cooperative localization. It
is also essential for obstacle avoidance or platooning. Thanks
to communication between vehicles, additional information,
such as vehicle model and dimension, can be transmitted to
facilitate this relative localization process. In this paper, we
present and compare different algorithms to solve this problem
based on LiDAR points and the pose and model communicated
by another vehicle. The core part of the algorithm relies on
iterative minimization tested with two methods and different
model associations using point-to-point and point-to-line dis-
tances. This work compares the accuracy, the consistency and
the number of iterations needed to converge for the different
algorithms in different scenarios, e.g. straight lane, two lanes
and curved lane driving.

I. INTRODUCTION

Vehicle detection and tracking are a key features for au-
tonomous driving which have led to many research work [7].
Knowing the relative pose of a detected vehicle in the ego-
vehicle reference frame is essential for tasks such as obstacle
avoidance or platooning.

The emergence of wireless communication capabilities
for vehicles in the recent years has given rise to new
possibilities. Having access directly to information such as
pose or vehicle dimensions, e.g., from the European standard
CAM (Cooperative Awareness Message) [5], a vehicle can
have a better understanding of its surroundings. Moreover,
if a vehicle can receive perception information from other
vehicles, it can have an augmented perception of the envi-
ronment enabling it to see much further. However, in order
to transpose perception information of one vehicle into the
reference frame of another, the relative pose between these
two vehicles is needed.

Many vision based vehicle detection algorithm can be
found in the literature with recent deep learning based de-
tectors having impressive performances [4]. However, these
methods often only return a bounding box in the image
frame and fail at providing a metric estimate of the pose of
the detected vehicle. On the contrary, LiDAR based vehicle
detection are much more adapted for relative pose estimation.
Vehicle detection by fitting a geometrical model such as L-
shape fitting [10] provides a good estimate of the relative
pose. Because the true shape of a detected vehicle is not
known a priori, only simple geometric models, i.e., box, are
usually used for model fitting. However in the context of
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Fig. 1: The ego-vehicle estimates the rigid transformation eqt
that maps the reference frame Rt of a target vehicle into its own
reference frame Re. The target vehicle communicates an estimate
of its pose along with a polygonal model of its shape (illustrated
in blue with an unavoidable error).

communicating vehicles, it is possible for a vehicle to send
an accurate model of its own geometric shape.

An Iterative Closest Point (ICP) algorithm is often used
for scan matching [3] but can also be used to fit a scan to a
model [9]. ICP provides a good estimate of the relative pose
but the associated covariance matrix is often not computed
which is crucial to obtain an information that can be used
in a data fusion process [2], [8], [1]. With that objective in
mind, we present in this paper several algorithms for rela-
tive localization based on model matching with covariance
estimation.

The paper is organized as follows. In Sec. II we introduce
the relative localization problem. In Sec. III, the iterative
minimization algorithm is presented with four different
matching methods to associate LiDAR points to a geomet-
ric model. We also introduce two different minimization
methods. Finally, the results of the different matching and
minimization methods are compared in Sec. IV.

II. PROBLEM STATEMENT

In this work, we aim to estimate the relative pose between
two vehicles and quantify its uncertainty. We assume that
an ego-vehicle, equipped with a LiDAR sensor, perceives
a target vehicle resulting in set of 2D points P = {pi =
[xi, yi], i = 1, . . . , n}, in the ego-vehicle reference frame
Re. There exists many algorithms in the literature to compute
this cluster of points from a LiDAR point cloud. This
computation is out of the scope of this work. In our study,
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we also suppose that the target vehicle communicates an
estimate of the pose of its reference frame Rt along with a
2D polygonal model, M = {mj = [xj , yj ], j = 1, . . . , N},
representing its geometrical shape (see Fig. 1). The points
mj represent the vertices of the model and the edges are
defined by two consecutive vertices (mj ;mj+1).

This problem can be solved in 3D using a multilayer
LiDAR and a 3D model with facets, e.g. STL model.
Nevertheless a monolayer LiDAR is less expensive and gives
already very good results with smaller computation time
and information to communicate. The 2D hypothesis cannot
always be respected, i.e. if the vehicles are not driving on
a flat road or if the LiDAR scan and the 2D model are not
on the same plane, e.g. when the model is at the height of
the bumper of a truck and the LiDAR at the height of the
bumper of a car. In these cases a 2D polygonal model can
be computed from the intersection of a 3D model and the
plane of the LiDAR scan.

The problem we aim at solving is to estimate the relative
pose eqt = [ext,

e yt,
e θt] (θ being the heading) of the target

vehicle in the reference frame of the ego-vehicle. In other
words, eqt represents the rigid transformation, i.e., translation
and rotation, that maps Rt to Re. Any point pt = [xt, yt] in
Rt can be transformed into Re as

pe = eTtpt =

cos(eθt) − sin(eθt)
ext

sin(eθt) cos(eθt)
eyt

0 0 1

xtyt
1

 (1)

where eTt is the transformation matrix associated to eqt and
p = [pT 1]T is the homogeneous vector associated to p.

This problem can also be formulated as finding the
transformation that would map the target model M to the
perceived set of points pi minimizing a positive scalar error
E:

eq̂t = arg min
q
E (q) = arg min

q

n∑
i=1

d(q; pi,M), (2)

where d(q; pi,M) represents a distance from point pi to the
model M corresponding to the transformation q.
By supposing that the minimization problem is convex, one
can also compute the covariance matrix of the error by using
an empirical estimate of the variance of the residuals, as
proposed in [1]:

eΣt = 2
E(eq̂t)

n− k

(
∂2E

∂q2
(eq̂t)

)−1

, (3)

where k is the dimension of eqt, i.e., k = 3. This computation
needs at least four LiDAR points in the scan ( n ≥ 4).

In this paper, we compare several ways to compute the
distance metric d, two different minimization methods within
an Iterative Closest Point framework and we evaluate the
consistencies of the estimated covariance matrices.

III. COMPUTATION OF THE RELATIVE POSE

ICP is often used to match a LiDAR scan with another
one. We used a similar method to estimate the relative pose
between the model of the target vehicle and the scan. The

(a) Point-to-
point.

(b) Point-to-
projection. (c) Point-to-

line.
(d) Mix-
matching.

Fig. 2: Matching between the LiDAR points (in blue) and the model
(in black). The matched points and lines are illustrated in red.

objective is to find the pose that minimizes the error between
the scan and the shape model.

Algorithm 1 Overview of the proposed method.
1: Compute a first rough relative pose using bounding

boxes of the scan and of the received shape model
Loop

2: Match the clustered scan points with the model
3: Find the pose that minimizes the error
4: Break if the variation of the error divided by the

number of LiDAR points is smaller than a threshold
End loop

5: Compute the covariance matrix

Algorithm 1 summarizes the method. In the following,
we study four matching methods and two minimization
strategies.

A. LiDAR points to model matching

We introduce four different ways to match a set of LiDAR
points to a polygonal model.
• Point-to-point, ICP (Fig. 2a): each LiDAR point is matched
with the closest vertices of the model. This method does
not take into account the edges of the model. A sparsely
discretized model may lead to a large distance between the
LiDAR points and the model.
• Point-to-projection, ICPP (Fig. 2b): to have a tighter
matching, one can match a LiDAR point to the nearest point
of the model considering both its vertices and edges. This
point can be projected onto the model using the smallest
distance : the orthogonal distance to an edge or the Euclidean
distance to a vertex.
• Point-to-line, PLICP (Fig. 2c): by matching a point to
its orthogonal projection may result in an increase of the
error since the matched point remains fixed during the
minimization. One way to take this into account is to match
the point directly to the line defined by its edge matched
using the point-to-projection approach.
• Mix-matching, mixICP (Fig. 2d): the last method is a mix-
matching using point-to-point matching when the smallest
distance to the model is an Euclidean distance to a vertex
and point-to-line matching when it is an orthogonal distance
to an edge.

The difference between mixICP and ICPP is subtle. With
point-matching methods the matched points are constant
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whereas the scan can slide along the model with line-
matching.

In the case of a matching between a LiDAR point pi and
a model point mj (a vertex or an orthogonal projection):

d(M,pi; q) = ‖Tmj − pi‖2 =
∥∥mj − T−1pi

∥∥2 , (4)

where the T is the transformation matrix associated to q.
It should be noted that fitting the model points mj to the
LiDAR points pi using T is equivalent to fit pi to mj using
T−1.
In the case of a matching between a LiDAR point pi and an
edge (mj ;mj+1) with a unit normal nj :

d(M,pi; q) =
((
mj − T−1pi

)
· nj
)2
. (5)

B. Minimization using polynomial roots

The error function (2) to minimize is non linear. Censi
[3] proposed to change the variable q = [x y θ]

T to q4D =
[x y c s]

T
= [x y cos θ sin θ]

T . By doing so, the minimization
of (2) using the distances (4) or (5) can be rewritten as a
constrained quadratic problem:{

minq4D E (q4D) = qT4DAq4D +Bq4D + C

subject to qT4DWq4D = 1
, (6)

where A, B and C depend on the matched points and

W =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 . (7)

To solve this problem, the Lagrangian multiplier λ can be
used, resulting in the following function to minimize:

L(q4D) = qT4DAq4D +Bq4D +C + λ(qT4DWq4D − 1). (8)

The global minimum can then be found by finding the
roots of a four degree polynomial in λ. Final, a 3D pose can
be computed using

eq̂t = [x y θ]
T

= [x y atan2 (s, c)]
T
. (9)

The expression of the covariance matrix eΣt can be
computed from the derivatives of eΣt(q4D) in function of
eq̂t.

C. Minimization using pseudo-inverse matrix

Another way to solve (2), proposed by Low [6], is to
assume that the angular variation between two consecutive
iterations of the ICP is small. Therefore, we can approximate
cos θ ≈ 1 and sin θ ≈ θ. Using this approximation the
problem becomes a linear least-squares problem:

min
q
E (q) = min

q
‖Aq − b‖2 , (10)

where A and b depend on the matched points. A pseudo-
inverse matrix can be used to solve the minimization problem
10:

ˆeqt = pinv(A)b. (11)

TABLE I: Comparison of the two minimization methods with the
four matchings. The accuracy is evaluated from the mean of the
norms of the position errors ‖ε‖ and the mean of the absolute
value of the orientation error |εθ|.

ICP ICPP PLICP mixICP

Polynomial
Minimization

‖ε‖ (cm) 8.2 7.8 13.7 11.0
|εθ| (°) 2.97 2.84 5.97 5.26

consistency (%) 85.5 58.8 69.8 70.0
Pseudo-
inverse
Minimization

‖ε‖ (cm) 8.2 7.8 11.5 10.8
|εθ| (°) 2.94 2.83 5.64 5.24

consistency (%) 93.5 83.9 91.6 89.8

The covariance matrix as defined by (3) is easy to compute
here (n > 3):

eΣt =
E (q̂)

n− 3

(
ATA

)−1
. (12)

IV. SIMULATION RESULTS1

We used simulated data to test different parameters with
the four matching and the two minimization algorithms.
Within the reference frame of the ego-vehicle, the target
vehicle is placed 10 meters ahead, i.e., eqt = [10 0 0]

T .
Gaussian noise has been added to these poses with the
standard deviation: σx = σy = 0.5 m and σθ = 5°. The
LiDAR points have also been simulated with a Gaussian
noise added to the range of the LiDAR beams, σρ = 0.1 m.

To test the consistency of the estimated covariance matrix
eΣ̂t associated to an estimated relative pose eq̂t at a given
risk α = 5%, we check if the ratio of epochs where the
following inequality holds is equal to 1− α:

(eqt −e q̂t)T ˆeΣt
−1

(eqt −e q̂t) < χ2
3,1−α, (13)

where χ2
3,1−α = 7.81 for a three dimensional problem with

an error probability α = 5% .

A. Comparison of the two minimization algorithms

One can see on table I the average position error ‖ε‖ is
similar for the two minimization methods excepted for the
point-to-line matching where the pseudo-inverse approach is
more accurate. The pseudo-inverse method with the point-to-
line matching becomes also more consistent. ICP converges
to ICPP when the model is very discretized. Its large uncer-
tainty ellipse comes from the minimization error, which is
not computed with the shortest distances to the model, but
with distances to the points of the model.

B. Bounding box model

In the results of table I, we used the polygonal model, in
blue in figure 3. In many works, only the bounding box, in
red in figure 3, is known and used.

One can see in table II that the relative poses found are
less accurate in position but more accurate in orientation.
The back of the bounding box is indeed not curved like
the back of the polygonal model. The LiDAR scan is more

1The Matlab source-code used for this paper is available at: https:
//www.hds.utc.fr/~heryelwa/dokuwiki/en/start

https://www.hds.utc.fr/~heryelwa/dokuwiki/en/start
https://www.hds.utc.fr/~heryelwa/dokuwiki/en/start
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smooth polygon
polygon
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Fig. 3: Bounding box model, in red, polygonal model, in blue, and
smooth polygonal model used to simulate the LiDAR scan. As this
model is used for platooning, i.e. only the back and the sides of the
vehicle are in the field of view of the LiDAR, only the rear of the
vehicle is detailed in the discretization of these models.

TABLE II: Results with a bounding box. The pose is supposed
to be found when the covariance matrix can be computed without
numerical singularity, when the problem has enough constraints.

ICP ICPP PLICP mixICP

Polynomial
Minimization

‖ε‖ (cm) 12.1 9.5 9.9 9.9
|εθ| (°) 2.36 3.39 2.97 2.97

consistency (%) 99.9 31.1 59.9 59.9
found (%) 100 100 56.4 56.4

Pseudo-
inverse
Minimization

‖ε‖ (cm) 17.1 9.5 11.0 11.0
|εθ| (°) 2.39 3.41 4.32 4.32

consistency (%) 78.1 60.1 64.5 64.4
found (%) 100 100 99.6 99.6

constrained in orientation and less constrained in position
when a bounding box is used instead of a polygonal model.

When using a bounding box model, the problem is less
constrained and only one segment can be matched by all
the LiDAR points. In this case, the point-to-line matching is
not appropriate for the first minimization. With this model
and this matching, the pseudo-inverse approach found a pose
with a computable covariance matrix more often.

C. Convergences of different iterative methods

Figure 4 shows an example of convergence for one epoch
for the four different matching methods. When a threshold of
1cm2 is used, all the matching methods converge with three
or four iterations on average. The ICP error is larger because
it does not use the smallest distance to the model like the

50 100 150 200 250

ICP                        (E-E-1)/n > 1cm2

ICP         1cm2 >= (E-E-1)/n > 0cm2

ICPP                     (E-E-1)/n > 1cm2

ICPP       1cm2 >= (E-E-1)/n > 0cm2

PLICP                   (E-E-1)/n > 1cm2

PLICP     1cm2 >= (E-E-1)/n > 0cm2

mixICP                  (E-E-1)/n > 1cm2

mixICP    1cm2 >= (E-E-1)/n > 0cm 2

0 5 10
0.01

0.015

0.02

0.025

0.03

0.035Error 
E/n (m2)

Iteration

Fig. 4: Convergences of the minimization errors for the second
minimization method and the four different matchings methods. The
dark color corresponds to the error before the convergence, for the
1cm2 threshold used to stop the algorithm. The variation of the
error between two iterations divided by the number matched LiDAR
points is compared to this threshold. The light color shows the error
before the convergence if the threshold is 0cm2.

(a) ICP (b) ICPP (c) PLICP (d) mixICP

Fig. 5: LiDAR points convergence on the geometrical polygonal
model for the different matchings. The model is shown in black
and the LiDAR points change from red, before the first iteration, to
green, once the algorithm has converged. 0.0001 used as threshold.

other methods. Sometimes, the ICPP seems to converge but
after a small variation of the error during several iterations,
a smaller error may still be found. When the threshold is
0cm2, the ICPP need 243 iterations on average to converge.
Indeed, the point-to-point matching methods like the ICP
or the PLICP limit the motion of the LiDAR points during
the minimization of one iteration. The ICPP recomputes
the points to match at every iteration, these points are
increasingly closer to the final result, but the error is also
increasingly smaller. When point-to-line matchings are used
in the PLICP, the LiDAR points have more freedom and the
convergence is faster.

Figure 5 shows the convergence of the LiDAR points for
the four matchings. When a point-to-line matching is used
in the PLICP or in the mixICP, the LiDAR points can slide
along the model as shown by subfigure c.

D. Scenarios
Three different scenarios have been tested on a straight

road, a two lanes road and curved road. In the straight road,
only the back of the vehicle is detected. The back is slightly
curved, a rotation and translation invariance are present. The
problem is here badly conditioned. The estimated pose is
therefore not very accurate and it is more difficult to obtain
the consistency. In a curved road driving, the back and one
side of the vehicle are in the field of view of the LiDAR.
The estimated pose is accurate. In the two lanes scenario,
the back and one side of the vehicle are detected (like for
the curved road) and the results are similar.

Figure 6 validates the previous hypothesis. The accuracy
for y and θ increases largely when two faces of the vehicle
are in the field of view of the LiDAR, e.g., in the two lanes
and the curved lane scenarios.

In the figure 7, one can see that the consistency is higher
for the two lanes driving than for the two other scenarios.

E. Inter-distance dependency
The previous results has been computed for an inter-

distance between the leader vehicle and the follower of
10m. We have also tested the dependency of the error and
the consistency for different inter-distances. When the inter-
distance increases, the number of LiDAR points on the leader
decreases. The error and the consistency become larger (Fig.
8).
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Fig. 6: Mean of the absolute value of the errors for x, y and θ for the four matchings and for the straight lane, the two lanes and the
curved lane drivings.
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Fig. 7: Consistency for the four matchings and for the three
scenarios: the straight lane, the two lanes and the curved lane
drivings.
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Fig. 8: Mean of the norm of the relative position error ‖ε‖ and
consistency for the four matchings depending on the inter-distance.

F. LiDAR noise dependency

The previous results are tested with a range noise on the
LiDAR points with a standard deviation of 10cm. We test
in this section the error and the consistency when the Li-
DAR becomes more accurate. The error and the consistency
increase when the LiDAR noise increases. (Fig. 9).

G. Noise on the poses of the leader and the follower

The standard deviations [σx σy σθ] = [0.5m 0.5m 5°] are
applied on the poses of the follower and the leader vehicles
on the previous results. We test here the effect of less
accurate poses on the error and the consistency. Even if
the initial localization corrects greatly the position error, the
iterative minimization is very sensitive to the orientation
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Fig. 9: Mean of the norm of the relative position error ‖ε‖ and
consistency for the four matchings depending on the LiDAR range
noise with a standard deviation σρ.
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Fig. 10: Mean of the norm of the relative ‖ε‖ and consistency
for the four matchings depending on the noise apply to the
poses of the follower and the leader vehicles with the standard
deviations: [σx σy σθ] = [0.5 0.5 5], [σx σy σθ] = [2.5 2.5 10] and
[σx σy σθ] = [5 5 20] ([σx] = [σy] = m and [σθ] = °).

noise. When it increases, the error increases (Fig. 10a)
and the consistency decreases drastically (Fig. 10b). If the
relative orientation error becomes very large (near 45°) some
ambiguity can appear and the LiDAR points can match on
the wrong side of the vehicle.

In this simulation, only one other vehicle was present.
If two or more vehicles are present the position error can
creates some ambiguity when the algorithm has to choose
which points matches with which vehicles.
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Fig. 11: Real platooning scenario on the test track Seville, Com-
piègne, France, in black. The ground truth of the two vehicles are
shown in black with their models. The pose and the model are in
red for the leader and in blue for the follower.

TABLE III: Real platooning scenario errors ‖ε‖ and consistency
for the four matchings, for second minimization method.

ICP ICPP PLICP mixICP
‖ε‖ (cm) 8.5 5.3 7.1 6.8

consistency (%) 75.1 68.6 92.5 91.8

H. Real platooning scenario

The relative localization have been tested on a real
platooning scenario. Two vehicles of the laboratory were
driving together on a test track (Fig. 11). This track has two
roundabouts and one straight lane between them.

Both vehicles were equipped with an IMU (Span CPT)
with a GNSS receiver using RTK corrections for the ground
truth. In practice, we have noticed that this ground truth was
not accurate enough for relative localization compared to
the high quality of the LiDAR measurements. Therefore,
the LiDAR of the follower was not used but simulated
to correspond perfectly with the pose given by the GNSS
receiver. The poses of the follower and of the leader used
for the relative localization algorithms were the ground truth
with Gaussian noise such as : [σx σy σθ] = [0.5m 0.5m 5°].
The LiDAR was simulated with a Gaussian range noise with
a 10cm standard deviation.

In this scenario, the inter-distance was evolving between
6m and 16m. The vehicles were following each other on the
curved road of the roundabout and on the straight lane.

The consistency and the accuracy are similar to the other
results : 92.5% of consistency and 71 mm of error for the
point-to-line matching.

V. CONCLUSION

This work has presented different relative localization
methods based on LiDAR points. An estimated pose received
from the detected vehicle is used for initialization. A first
localization is computed using the bounding boxes of the
LiDAR points and of the communicated model. This is

used to reduce the position error, the orientation error being
unchanged in this stage. An iterative minimization algorithm
is then applied using this first localization. We have presented
and compared two minimization methods and four different
points to polygonal model matchings. First, we have noticed
on different scenarios that the second minimization method
using the pseudo-inverse matrix gives a better accuracy and
consistency. Secondly, a point-to-line matching allows a bet-
ter estimation of the covariance matrix. This matching gives
more freedom to the LiDAR points which can slide along
the model. Moreover, this matching needs less iterations to
converge. We have also observed that, when two sides of a
vehicle are in the field of view of the LiDAR, the problem
is better conditioned and the accuracy is higher.

In future work, we will use these algorithms to compute
the absolute pose of the follower using the estimated pose
of the leader like a deported GNSS antenna. We will test
these algorithms with experimental data with two vehicles
and more.
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