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Abstract— In many robotics applications path planning has 

safety implications that need to be addressed and understood. 

Approaches based purely on learning algorithms have today no 

strong guarantees that the path found, even given perfect 

environment model, is safe. In contrast, search based methods 

have strong theoretical guarantees but are significantly slower 

and hard to parallelize. In this paper we present a method of 

obtaining heuristics for search based algorithms targeting to 

reduce the search complexity by combining the strengths of the 

two paradigms. We show that a complexity reduction of more 

than 30% is achievable with less than 1% drop in path 

optimality. As a consequence of the complexity reduction we 

also measure a performance boost of more than 30%.  

 

I. INTRODUCTION 

Comprehensive environment models are an essential part 

of robotics application and driver assistance. A significant 

number of publications [1,2,3,4] have concentrated on 

developing strategies for producing predictive environment 

models that incorporate information from multiple sensors. 

The typical approach in robotics has been based on the sense 

– plan – act paradigm, where environment models 

constructed based on the sensed information are used in the 

planning phase. Other paradigms, based on reactive control 

need also a representation of the environment yet 

concentrate more on reaction timeliness than on environment 

model correctness [5]. 

Path planning has been studied extensively in the past 

years and many of the algorithms have been implemented 

and tested in various robotics applications [6]. Most of the 

modern strategies perform well in environments where no 

adversarial interaction occur or/and where sensing is still 

acceptable accurate. In driver assistance systems for instance 

path planning based on a grid based representation of the 

environment is very often used. Such a representation allows 

the designer to choose from multiple methods of path 

planning as for instance probabilistic roadmap, rapidly 

exploring random trees, search based methods (e.g. variants 

of A*) , reinforcement learning methods etc.  

In automotive application functional safety is one of the 

critical aspects needed to be considered in system design. 

The ISO26262 [7] gives guidelines and requirements at the 

system level, defining the framework on how hardware and 

software is built. The framework does not mandate specific 

implementation features, so the designer has the freedom 

and the responsibility of how to achieve the functional safety 

for the final product. Typically, the system safety goals are 

 
 

achieved by decomposing the system and applying 

redundancy and fault detection mechanisms. In such systems 

multiple environment models are used, different modalities 

for path planning are employed to achieve the system level 

safety goals. One possible architecture is presented in Figure 

1, where two different environment models are used, 

different possible paths are obtained and then the cross 

check between environment paths is performed. Note that 

typically a significant number of paths is produced by each 

path planner (e.g. 100), with different characteristics and 

after validating this paths one both environment models one 

path will be selected for the execution.   

 
 

Figure 1: Functional safety decomposition of the planning and 

environment modeling   

 

The algorithmic diversity is a very important part of the 

architecture that allows such a decomposition to be valid. 

For instance, different methods of path planning can be used 

or different heuristics can be employed. For the environment 

model different settings can be used such that one 

environment model has a longer aggregation time while the 

other is more refined for quick environment changes.  

In this paper we will concentrate mainly on search based 

path planning and propose methods on how to reduce the 

search complexity by producing search heuristics based on 

convolutional neural networks. We will study also the 

tradeoff between complexity reduction and optimality. It is 

expectable that such heuristics might louse the optimality 

guarantees yet in such systems the optimality is in itself very 

hard to quantify. For autonomous driving applications the 

optimality does not only imply the shortest path but might be 

formulated as a combination of shortest path, lowest energy 

consumption and comfort. 

Due to the increased number of paths that need to be 

found a reduction in search complexity is highly desirable. 

Typically neural networks run best on accelerators while 

search based schemes have better run times on cores 
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allowing for a pipelining of producing heuristics and 

searching a path as depicted in Figure 2. To be noted is also 

that if on the target hardware multiple neural network 

compute accelerators and cores are available the process can 

be parallelized and so provide more diversity to the solution 

and potentially faster runtime. 

 

 
 

Figure 2: Pipelining the neural network execution with the A* 

search. Each neural network (NN1, NN2...) produces a new 

heuristic denoted as h that is used by A* to produce the paths 

Path0, Path1 etc.   

 
The search scheme based on A* has strong guarantees 

since it test each cell if it is occupied or not and is as such 
guaranteed not to have in the path produced any obstacle, as 
long as the environment model is accurate. Mitigation of the 
sensorial imperfections and adversarial behaviors is typically 
based on continuous and timely replanting. The practical 
assumption is that the sensors get more accurate as the robot 
is approaching the obstacle and that the physical constraints 
of the other agents prohibits them from changing strategies 
with a very low time granularity (the behavior is stationary in 
the re-planning interval). This assumptions are reasonable for 
most use-cases and can be fairly accurate for instance in 
parking use-cases. Approaches such in [7] have no guarantee 
on correctness of the path and generally reinforcement 
learning approaches are very susceptible to catastrophic 
forgetting and can be used in practice only after a validation 
step where correctness and physical constraints are taken into 
consideration. 

II. EXPERIMENTAL SETUP 

For our experiments we have constructed a dataset of 

500000 occupancy grids of size 32x32 where each cell is 

marked either as free or as occupied (the probability of a cell 

to be occupied is 0.4, an example is provided in Figure 3). 

The starting location and the goal are encoded also as a grid 

with one in the respective locations and zero in the rest. An 

agent is placed in the start location and is able to take an 

action from the action set A = {left, right, up, down, left-up, 

right-up, left-down, right-down}. A move up, down, left or 

right is associated with a cost of one while a move 

diagonally has a cost of 1.41. The path cost is the summation 

of the cost of the individual moves. The data set contains 

also the Euclidian distance heuristic encoded as grid and the 

optimal heuristic that is found after running the A* 

algorithm from every location to the goal. As can be 

expected, computing the optimal heuristic is the most 

demanding part in the dataset generation and takes a few 

weeks on our system setup. We also keep the number of 

opened nodes by A* for the Euclidian distance heuristic. 

 

 
Figure 3: Occupied grid cells are marked with orange, the path 

from start to goal is marked with light orange   

 

Comparing the complexity associated with two heuristics 

implies comparing the number of open nodes during the A* 

search. The second dimension of interest is the optimality of 

the path; it is well known that in case the heuristic 

overestimates the cost to the goal there are no optimality 

guarantees. We have used the following two performance 

criteria to assess the quality of the new heuristic: 

  

       (1) 

       (2) 

, WHERE: 

OE = Number of opened nodes by A* given Euclidian 

distance as heuristic  

ONN = Number of opened nodes by A* given output of the 

neural network as heuristic 

OD = optimal path length 

DNN = path length found by A* given the heuristic obtained 

with a neural network 

The summation if (1) and (2) are over the test dataset. 

 In our experiments we obtain new heuristics with a neural 

network that has as input three channels (Figure 4): 

- Start – Goal channel that has the same dimensions as 

the grid with one in the start and goal location and 

zero everywhere else 

- Grid channel that has one in every cell where an 

obstacle is present and zero where no obstacle is 

present 

- Euclidian distance channel that has the Euclidian 

distance from each cell to the goal. This channel 

can be obtained in an offline computation. 

The network output is a matrix of the same size as the grid 

in that each element represents an estimate of the path length 

from that specific location to the goal. This matrix is used as 
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a heuristic for A* and used to compute the performance 

metrics presented in (1) and (2). 

 

 
Figure 4: Input channels to the neural network: a) Start-Stop 

channel, b) Grid Channel, c) Euclidian distance channel 

III. OBTAINING NEW HEURISTICS 

The goal is to obtain a new heuristic that is less complex 

and that loses as less as possible from the optimality 

characteristic. Complexity and optimality cannot be obtained 

directly by a differential function that can be introduced in 

the neural network so we will concentrate on finding cost 

functions that are correlated to this indicators such that 

optimizing this cost functions will improve the two hidden 

indicators.  

In [8] Theorem 12 from Chapter 3 indicates that given 

two admissible heuristics  and  for that 

 for every n imply that an A* search using  

is more efficient than A* search using  (this is intuitively 

obvious since we have a better approximate of the optimal 

heuristic). It is also shown in [8], Chapter 7, that when non-

admissible heuristics are used the accuracy with that we 

approximate the optimal path is not the most critical aspect 

since less accurate estimations can lead to more informed 

heuristics (this is somehow surprising but has as background 

the idea that overestimates outside the path can be benefic to 

the search complexity). Given the insides above and the fact 

that the neural network is not guaranteed to produce an 

admissible heuristic it is clear that a simple formulation of 

the cost function where we try to approximate as much as 

possible the optimal path is prone to produce uncorrelated 

results to the complexity and optimality metrics. 

In our experiments we test the following cost functions: 

 

          (3) 

  (4) 

 

, where: 

- The optimal heuristic, true distance to the goal 

  - Output of the neural network 

 - Euclidian distance heuristic 

 

The denominator in  encourages the output of the neural 

network to be greater than the initial Euclidian heuristic 

while the numerator in   is responsible for guiding the 

network towards the optimal policy and penalizes severe 

overestimates. We use in the computation of the loss all cells 

that are not occupied and give equal weighting to cells that 

are on path and off path.  

 is constructed out of two terms , the first term 

encourages the output of the neural network to be close to 

the optimal heuristic while the second term pushes the 

output to be higher than the Euclidian distance heuristic.  

We have experimented also with several other loss 

function formulations where the terms of the loss function 

are weighted or where we treat the loss differently if it is off 

the minimal path or on the minimal path (inspired by the fact 

that overestimate on path can be highly detrimental to 

complexity). The results obtained where similar to the 

vanilla formulation from (3) and (4) but the training 

procedure was observed to be more unstable. 

The neural network architecture used in our experiments 

is depicted in Figure 5 and has a contracting part and an 

expending part similar to topologies employed in pixel 

labeling applications. The intuition behind comes from [9] 

where the grid is split into blocks and the planning is done 

hierarchically, first between blocks and then inside blocks. 

Similarly, the network contracts the information into blocks 

given by the receptive field of the convolution and pooling 

and in the later stage incorporates more fine grained 

information. The parameters for the topology are detailed in 

Table 1. As it is custom we have split the data set into 

training, validation and test and optimized the network with 

the Adam optimizer with learning rate 1e-4. The batch size 

used throughout the experiments is 128.     

 

 
Figure 5: Neural network topology used in the experiments. 

Conv1:5 are two dimensional convolution layers while Deconv1:2 

are two dimensional transpose convolutions 

 

Layer Kernel 

Size 

Stride Out 

Channels 

Input - - 3 

Conv1+Relu 3x3 1 32 

Max Pooling 3x3 2 32 

Conv2+Relu 3x3 2 16 

Max Pooling 3x3 2 32 

Conv1 + Relu + Max pooling 

Conv2 + Relu + Max pooling 

Conv3 + Relu 

Deconv1 

Concatenate 1 

Deconv2 

Concatenate 2 

Conv5 

Conv4 

h 



  

Conv3+Relu 3x3 2 8 

Deconv1 3x3 2 8 

Concatenate 1 - - 24 

Conv4 3x3 1 8 

Deconv2 3x3 2 8 

Concatenate 2 - - 40 

Conv5 3x3 1 1 
 

Table 1: Neural network parameters 

IV. RESULTS 

One of the first questions that arise is if the loss functions 

are correlated with the algorithmic complexity and 

optimality of the A* algorithm. In Figure 6 and 7 the 

training process statistics are shown (last 105 epochs of the 

training), the correlation between (1) , (2) and the  and 

respectively   loss functions are immediate to spot since as 

the loss decreases the complexity reduction has an 

increasing trend while the loss in optimality decreases. The 

metrics of (1) and (2) are computed over the validation test 

that represents about 5% of the overall dataset. 

 

 
Figure 6: Upper plot is the  loss; middle plot the complexity 

reduction (1); lower plot the optimality lost (2). The x axis for all 

plots represents the training epoch 

 

 
 

Figure 7: Upper plot is the   loss; middle plot the complexity 

reduction (1); lower plot the optimality lost (2). The x axis for all 

plots represents the training epoch 

 

The metrics (1) and (2) for the two loss functions are 

presented in Table 2 and are obtained based on the test 

subset that has 128000 grid samples. The computational time 

gain as measured on our system is presented in the 3rd 

column of the Table 2 and it is based on the formula (5). As 

can be observed the computational time reduction follows 

closely the complexity reduction. In our experiments we run 

first the A* algorithm for the heuristic obtained with the 

neural network and after the search based on the Euclidian 

distance heuristic. While the data cache is flushed in 

between the runs of A* the instruction cache is not flushed 

making it highly likely that the run of the Euclidian distance 

based search benefits from a better hit ratio, nevertheless the 

runtime is reduced by more than a 3rd. 

 

        (5) 

, where: 

 – Runtime for the Euclidian distance heuristic A* 

 – Runtime for the neural network heuristic A* 

 

 

Loss 

Function 

C[%] O[%] T[%] 

   37.64 1.01 36.32 

   35.82 0.71 32.45 

Table 2: Performance metrics for   and    

V. CONCLUSION 

In this paper we have shown a novel method of obtaining 

new heuristics for A* that have lower complexity than the 

starting Euclidian distance with a minimal loss in 

complexity. The loss functions used follow the intuitions 

obtained from theoretical results obtained in [8]. We show 

that such indirect cost functions are correlated to the hidden 

variables in the A* algorithm and that joint optimization is 

possible. 

Future work will investigate higher dimensional graphs 

and introduce robot poses in the search process. 
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