

Abstract— In many robotics applications path planning has

safety implications that need to be addressed and understood.

Approaches based purely on learning algorithms have today no

strong guarantees that the path found, even given perfect

environment model, is safe. In contrast, search based methods

have strong theoretical guarantees but are significantly slower

and hard to parallelize. In this paper we present a method of

obtaining heuristics for search based algorithms targeting to

reduce the search complexity by combining the strengths of the

two paradigms. We show that a complexity reduction of more

than 30% is achievable with less than 1% drop in path

optimality. As a consequence of the complexity reduction we

also measure a performance boost of more than 30%.

I. INTRODUCTION

Comprehensive environment models are an essential part

of robotics application and driver assistance. A significant

number of publications [1,2,3,4] have concentrated on

developing strategies for producing predictive environment

models that incorporate information from multiple sensors.

The typical approach in robotics has been based on the sense

– plan – act paradigm, where environment models

constructed based on the sensed information are used in the

planning phase. Other paradigms, based on reactive control

need also a representation of the environment yet

concentrate more on reaction timeliness than on environment

model correctness [5].

Path planning has been studied extensively in the past

years and many of the algorithms have been implemented

and tested in various robotics applications [6]. Most of the

modern strategies perform well in environments where no

adversarial interaction occur or/and where sensing is still

acceptable accurate. In driver assistance systems for instance

path planning based on a grid based representation of the

environment is very often used. Such a representation allows

the designer to choose from multiple methods of path

planning as for instance probabilistic roadmap, rapidly

exploring random trees, search based methods (e.g. variants

of A*) , reinforcement learning methods etc.

In automotive application functional safety is one of the

critical aspects needed to be considered in system design.

The ISO26262 [7] gives guidelines and requirements at the

system level, defining the framework on how hardware and

software is built. The framework does not mandate specific

implementation features, so the designer has the freedom

and the responsibility of how to achieve the functional safety

for the final product. Typically, the system safety goals are

achieved by decomposing the system and applying

redundancy and fault detection mechanisms. In such systems

multiple environment models are used, different modalities

for path planning are employed to achieve the system level

safety goals. One possible architecture is presented in Figure

1, where two different environment models are used,

different possible paths are obtained and then the cross

check between environment paths is performed. Note that

typically a significant number of paths is produced by each

path planner (e.g. 100), with different characteristics and

after validating this paths one both environment models one

path will be selected for the execution.

Figure 1: Functional safety decomposition of the planning and

environment modeling

The algorithmic diversity is a very important part of the

architecture that allows such a decomposition to be valid.

For instance, different methods of path planning can be used

or different heuristics can be employed. For the environment

model different settings can be used such that one

environment model has a longer aggregation time while the

other is more refined for quick environment changes.

In this paper we will concentrate mainly on search based

path planning and propose methods on how to reduce the

search complexity by producing search heuristics based on

convolutional neural networks. We will study also the

tradeoff between complexity reduction and optimality. It is

expectable that such heuristics might louse the optimality

guarantees yet in such systems the optimality is in itself very

hard to quantify. For autonomous driving applications the

optimality does not only imply the shortest path but might be

formulated as a combination of shortest path, lowest energy

consumption and comfort.

Due to the increased number of paths that need to be

found a reduction in search complexity is highly desirable.

Typically neural networks run best on accelerators while

search based schemes have better run times on cores

On finding low complexity heuristics for path planning in safety

relevant applications

Krutsch Robert, Intel

Environment

Model 1

Path

Planning 1

Environment

Model 2

Path

Planning 2

Cross

Validation

allowing for a pipelining of producing heuristics and

searching a path as depicted in Figure 2. To be noted is also

that if on the target hardware multiple neural network

compute accelerators and cores are available the process can

be parallelized and so provide more diversity to the solution

and potentially faster runtime.

Figure 2: Pipelining the neural network execution with the A*

search. Each neural network (NN1, NN2...) produces a new

heuristic denoted as h that is used by A* to produce the paths

Path0, Path1 etc.

The search scheme based on A* has strong guarantees

since it test each cell if it is occupied or not and is as such
guaranteed not to have in the path produced any obstacle, as
long as the environment model is accurate. Mitigation of the
sensorial imperfections and adversarial behaviors is typically
based on continuous and timely replanting. The practical
assumption is that the sensors get more accurate as the robot
is approaching the obstacle and that the physical constraints
of the other agents prohibits them from changing strategies
with a very low time granularity (the behavior is stationary in
the re-planning interval). This assumptions are reasonable for
most use-cases and can be fairly accurate for instance in
parking use-cases. Approaches such in [7] have no guarantee
on correctness of the path and generally reinforcement
learning approaches are very susceptible to catastrophic
forgetting and can be used in practice only after a validation
step where correctness and physical constraints are taken into
consideration.

II. EXPERIMENTAL SETUP

For our experiments we have constructed a dataset of

500000 occupancy grids of size 32x32 where each cell is

marked either as free or as occupied (the probability of a cell

to be occupied is 0.4, an example is provided in Figure 3).

The starting location and the goal are encoded also as a grid

with one in the respective locations and zero in the rest. An

agent is placed in the start location and is able to take an

action from the action set A = {left, right, up, down, left-up,

right-up, left-down, right-down}. A move up, down, left or

right is associated with a cost of one while a move

diagonally has a cost of 1.41. The path cost is the summation

of the cost of the individual moves. The data set contains

also the Euclidian distance heuristic encoded as grid and the

optimal heuristic that is found after running the A*

algorithm from every location to the goal. As can be

expected, computing the optimal heuristic is the most

demanding part in the dataset generation and takes a few

weeks on our system setup. We also keep the number of

opened nodes by A* for the Euclidian distance heuristic.

Figure 3: Occupied grid cells are marked with orange, the path

from start to goal is marked with light orange

Comparing the complexity associated with two heuristics

implies comparing the number of open nodes during the A*

search. The second dimension of interest is the optimality of

the path; it is well known that in case the heuristic

overestimates the cost to the goal there are no optimality

guarantees. We have used the following two performance

criteria to assess the quality of the new heuristic:

 (1)

 (2)

, WHERE:

OE = Number of opened nodes by A* given Euclidian

distance as heuristic

ONN = Number of opened nodes by A* given output of the

neural network as heuristic

OD = optimal path length

DNN = path length found by A* given the heuristic obtained

with a neural network

The summation if (1) and (2) are over the test dataset.

 In our experiments we obtain new heuristics with a neural

network that has as input three channels (Figure 4):

- Start – Goal channel that has the same dimensions as

the grid with one in the start and goal location and

zero everywhere else

- Grid channel that has one in every cell where an

obstacle is present and zero where no obstacle is

present

- Euclidian distance channel that has the Euclidian

distance from each cell to the goal. This channel

can be obtained in an offline computation.

The network output is a matrix of the same size as the grid

in that each element represents an estimate of the path length

from that specific location to the goal. This matrix is used as

NN1 A*

NN2 A*

E

N

V

I

R

O

N

M

E

N

T

M

O

D

E

L

S

Path0 h

h
Path1

…

a heuristic for A* and used to compute the performance

metrics presented in (1) and (2).

Figure 4: Input channels to the neural network: a) Start-Stop

channel, b) Grid Channel, c) Euclidian distance channel

III. OBTAINING NEW HEURISTICS

The goal is to obtain a new heuristic that is less complex

and that loses as less as possible from the optimality

characteristic. Complexity and optimality cannot be obtained

directly by a differential function that can be introduced in

the neural network so we will concentrate on finding cost

functions that are correlated to this indicators such that

optimizing this cost functions will improve the two hidden

indicators.

In [8] Theorem 12 from Chapter 3 indicates that given

two admissible heuristics and for that

 for every n imply that an A* search using

is more efficient than A* search using (this is intuitively

obvious since we have a better approximate of the optimal

heuristic). It is also shown in [8], Chapter 7, that when non-

admissible heuristics are used the accuracy with that we

approximate the optimal path is not the most critical aspect

since less accurate estimations can lead to more informed

heuristics (this is somehow surprising but has as background

the idea that overestimates outside the path can be benefic to

the search complexity). Given the insides above and the fact

that the neural network is not guaranteed to produce an

admissible heuristic it is clear that a simple formulation of

the cost function where we try to approximate as much as

possible the optimal path is prone to produce uncorrelated

results to the complexity and optimality metrics.

In our experiments we test the following cost functions:

 (3)

 (4)

, where:

- The optimal heuristic, true distance to the goal

 - Output of the neural network

 - Euclidian distance heuristic

The denominator in encourages the output of the neural

network to be greater than the initial Euclidian heuristic

while the numerator in is responsible for guiding the

network towards the optimal policy and penalizes severe

overestimates. We use in the computation of the loss all cells

that are not occupied and give equal weighting to cells that

are on path and off path.

 is constructed out of two terms , the first term

encourages the output of the neural network to be close to

the optimal heuristic while the second term pushes the

output to be higher than the Euclidian distance heuristic.

We have experimented also with several other loss

function formulations where the terms of the loss function

are weighted or where we treat the loss differently if it is off

the minimal path or on the minimal path (inspired by the fact

that overestimate on path can be highly detrimental to

complexity). The results obtained where similar to the

vanilla formulation from (3) and (4) but the training

procedure was observed to be more unstable.

The neural network architecture used in our experiments

is depicted in Figure 5 and has a contracting part and an

expending part similar to topologies employed in pixel

labeling applications. The intuition behind comes from [9]

where the grid is split into blocks and the planning is done

hierarchically, first between blocks and then inside blocks.

Similarly, the network contracts the information into blocks

given by the receptive field of the convolution and pooling

and in the later stage incorporates more fine grained

information. The parameters for the topology are detailed in

Table 1. As it is custom we have split the data set into

training, validation and test and optimized the network with

the Adam optimizer with learning rate 1e-4. The batch size

used throughout the experiments is 128.

Figure 5: Neural network topology used in the experiments.

Conv1:5 are two dimensional convolution layers while Deconv1:2

are two dimensional transpose convolutions

Layer Kernel

Size

Stride Out

Channels

Input - - 3

Conv1+Relu 3x3 1 32

Max Pooling 3x3 2 32

Conv2+Relu 3x3 2 16

Max Pooling 3x3 2 32

Conv1 + Relu + Max pooling

Conv2 + Relu + Max pooling

Conv3 + Relu

Deconv1

Concatenate 1

Deconv2

Concatenate 2

Conv5

Conv4

h

Conv3+Relu 3x3 2 8

Deconv1 3x3 2 8

Concatenate 1 - - 24

Conv4 3x3 1 8

Deconv2 3x3 2 8

Concatenate 2 - - 40

Conv5 3x3 1 1

Table 1: Neural network parameters

IV. RESULTS

One of the first questions that arise is if the loss functions

are correlated with the algorithmic complexity and

optimality of the A* algorithm. In Figure 6 and 7 the

training process statistics are shown (last 105 epochs of the

training), the correlation between (1) , (2) and the and

respectively loss functions are immediate to spot since as

the loss decreases the complexity reduction has an

increasing trend while the loss in optimality decreases. The

metrics of (1) and (2) are computed over the validation test

that represents about 5% of the overall dataset.

Figure 6: Upper plot is the loss; middle plot the complexity

reduction (1); lower plot the optimality lost (2). The x axis for all

plots represents the training epoch

Figure 7: Upper plot is the loss; middle plot the complexity

reduction (1); lower plot the optimality lost (2). The x axis for all

plots represents the training epoch

The metrics (1) and (2) for the two loss functions are

presented in Table 2 and are obtained based on the test

subset that has 128000 grid samples. The computational time

gain as measured on our system is presented in the 3rd

column of the Table 2 and it is based on the formula (5). As

can be observed the computational time reduction follows

closely the complexity reduction. In our experiments we run

first the A* algorithm for the heuristic obtained with the

neural network and after the search based on the Euclidian

distance heuristic. While the data cache is flushed in

between the runs of A* the instruction cache is not flushed

making it highly likely that the run of the Euclidian distance

based search benefits from a better hit ratio, nevertheless the

runtime is reduced by more than a 3rd.

 (5)

, where:

 – Runtime for the Euclidian distance heuristic A*

 – Runtime for the neural network heuristic A*

Loss

Function

C[%] O[%] T[%]

 37.64 1.01 36.32

 35.82 0.71 32.45

Table 2: Performance metrics for and

V. CONCLUSION

In this paper we have shown a novel method of obtaining

new heuristics for A* that have lower complexity than the

starting Euclidian distance with a minimal loss in

complexity. The loss functions used follow the intuitions

obtained from theoretical results obtained in [8]. We show

that such indirect cost functions are correlated to the hidden

variables in the A* algorithm and that joint optimization is

possible.

Future work will investigate higher dimensional graphs

and introduce robot poses in the search process.

REFERENCES

[1] Florian Homm et al.,Efficient Occupancy Grid Computation on the

GPU with Lidar and Radar for Road Boundary Detection. IEEE
Intelligent Vehicles Symposium, 2010, San Diego,

10.1109/IVS.2010.5548091.

[2] Dominik Nuss, Doctoral Dissertation: A Random Finite Set Approach
for Dynamic Occupancy Grid Maps with Real-Time Applications,

2016, University Ulm

[3] Alberto Elfs et al., Using Occupancy Grids for Mobile Robot

Perception and Navigation, IEEE Computer Volume:22 Issue:6, 1989,
10.1109/2.30720

[4] Sebastian Thrun. Learning Occupancy Grids with Forward Models.
International Conference of Intelligent Robots and Systems, 2001,

Maui, 10.1109/IROS.2001.977219

[5] Daniel Kappler et al. Real time perception meets Reactive Motion
Generation , IEEE Robotics and Automation Latters, 2018,

10.1109/LRA.2018.2795645

[6] Eric Galcern et al. A survey on coverage path planning for robotics
Robotics and Autonomous Systems 61 1258-1276, 2013

[7] Aviv Tamar et al. ,Value Iteration Networks, NIPS , 2016

[8] Pearl, Judea. Heuristics: Intelligent Search Strategies for Computer

Problem Solving , Michigan, Addison-Wesley, 1984, Chapter 3,7

[9] Adi Botea et al. Near Optimal Hierarchical Path-Finding, Journal of

Game Development, Volume 1, Pages 7-28, 2004

https://doi.org/10.1109/IVS.2010.5548091
https://doi.org/10.1109/2.30720
https://doi.org/10.1109/IROS.2001.977219
http://dx.doi.org/10.1109/LRA.2018.2795645

