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Abstract—CoMapping is a framework to efficient manage,
share, and merge 3D map data between mobile robots. The
main objective of this framework is to implement a Collaborative
Mapping for outdoor environments where it can not use all the
time GPS data. The framework structure is based on 2 stages.
The first one, the Pre-Local Mapping Stage, each robot constructs
in real-time a pre-local map of its environment using Laser
Rangefinder data and low cost GPS information only in certain
situations. Afterwards, in the Local Mapping Stage, the robots
share their pre-local maps and merge them in a decentralized way
in order to improve their new maps, renamed now as local maps.
An experimental study for the case of decentralized cooperative
3D mapping is presented, where tests were conducted using 3
intelligent cars equipped with lidars and GPS receiver devices in
urban outdoor scenarios. We also discuss the performance of all
the cooperative system in terms of map alignments.

I. INTRODUCTION

Mapping challenge can be complex since in certain sit-
uations, e.g. for scenarios of large regions, it can require
the usage of a group of robots that build the maps in a
reasonable amount of time considering accuracy in the map
construction [1]. So, a set of robots extends the capability of a
single robot by merging measurements from group members,
providing each robot with information beyond their individual
sensors range. This allows a better usage of resources and
executes tasks which are not feasible by a single robot. Multi-
robot mapping is considered as a centralized approach when
it requires all the data to be analysed and merged at a single
computation unit. Otherwise, in a decentralized approach, each
robot builds their local maps independent of one another and
merge their maps upon rendezvous.
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Fig. 1. Scheme of our CoMapping System considering a decentralized case

Figure 1 depicts the scheme of work proposed in this article
for a group of robots where it was assumed that ZOE robot
have direct exchange of data (as pose, size and limits of maps)
with FLUENCE and GOLFCAR. And by contrast, FLUENCE

and GOLFCAR are in a scenario of non-direct communication,
that is possible in cases where the robots have limited access
conditions to a same environment, avoiding to define a meeting
point for map sharing between these mobile units.

Following this scenario, this paper presents the development
and validation of a new Cooperative Mapping framework
(CoMapping) where:
• In the first stage named “Pre-Local Mapping”, each indi-

vidual robot builds its map by processing range measure-
ments from a 3D lidar moving in six degrees of freedom
(6-DOF) and using low cost GPS data (GPS/GGA).

• For the second stage named “Local Mapping”, the robots
send a certain part of their pre-local maps to the other
robots based on our proposed Sharing algorithm. The
registration process includes an intersecting technique of
maps to accelerate processing

This decentralized system is deployed in an outdoor en-
vironment without continuous GPS service. Our proposal has
been tested and validated in realistic situations. Results include
maps developed with data acquired on the surroundings of the
ECN (École Centrale Nantes) campus.

II. RELATED WORKS

In a scenario of cooperative mapping, robots first operate
independently to generate individual maps. Here the regis-
tration method plays a fundamental role. Many registration
applications use Lidar as a Rangefinder sensor for construction
of maps [2]. However, a high lidar scan rate compared to
its tracking can be harmful for this task, since it is possible
the apparition of distortion in the map construction. For those
cases, ICP [3] can be applied to match different scans. 2D and
3D lidar implementations with geometric structures matches of
a generated local point group were presented in [4] [5]. Those
methods use batch processing to build maps with accuracy and
hence are not applicable to real-time map construction. In the
first stage of our implementation we reconstruct maps as 3D
pointclouds in real-time using 3-axis lidar by extraction and
matching of geometric features in Cartesian space based in [6]
initially. Then our system uses GPS position data to localize
that cloud in a global frame.

Once all the maps have been placed in a global frame,
they have to be merged together to form a global map. In
this context, in [7] proposed a method for 3D merging of



occupancy grid maps based on octrees [8] for multi-robots.
Simulation results were presented using Gazebo tool. Maps
generated by each simulated robot are stored in files and finally
merged offline. For the merging step, an accurate transforma-
tion between maps was assumed as known, nevertheless in real
applications, that information (the transformation) is not accu-
rate, since in many cases it is obtained by means of uncertain
sensor observations that may not offer a reliably information.
Contrary, we preformed real experiments for a multi-robot
application without supposed known the map transformation.
Later, in [9] using an technique pre-merging, which consists in
extract from of each map the subset of points included in the
common region between maps bounding. Then, a centralized
merging process refines the transformation estimate between
maps by ICP registration [3] We use a variation of that method
[9] but previously we include a efficient technique to exchange
maps between robots in order to optimize bandwidth resources
of multi-robot network.

On the other hand, other different solutions can be used in
order to merge maps for a group of robots. For instance, cases
with centralized approach, where the merging is computed on a
unit or processing center once the entire environment has been
explored by the vehicles, as is presented in [10], [9]. The other
approach is the decentralized option, where map merging is
executed in different units while traversing the environment, in
which this approach considers a meeting point for the vehicles
in order to exchange their maps and other data [11], [1], [12].
This last approach is experimentally studied in this paper.

III. METHODOLOGY

A. Pre-Local Mapping Stage

Each mobile robot executes a Pre-Local Mapping system
using data provided by a LidarSLAM node. We just use GPS
position to project the generated map on a global frame,
in order to reduce project implementation costs, a beneficial
cheap GPS service was used, specifically GPS/GGA(Global
Positioning System Fix Data) at an accuracy of about 2
to 7 meters. Another advantage of our Pre-Local Mapping
Stage is its versatile configuration, since it is not depend on
a specific LidarSLAM method. A modified version of the
LOAM technique 1 [6] was chosen as LidarSLAM method
for this article because it currently ranks first in the KITTI
evaluation table 2.
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Fig. 2. Architecture of Pre-Local Mapping Stage

Figure 2 illustrates the block diagram of this stage, where
P̂ is the raw point cloud data generated by a laser scan

1LOAM: https://github.com/laboshinl/loam velodyne
2KITTI ranking: http://www.cvlibs.net/datasets/kitti/eval odometry.php

in the beginning. For each sweep, P̂ is registered in the
lidar coordinates {L}. The combined point cloud during each
sweep k generates Pk. This Pk is processed by an algorithm
named Lidar Odometry, which runs at a frequency around
10Hz and receives this point cloud and computes the lidar
motion (transform Tk) between two consecutive sweeps. The
distortion in Pk is corrected using the estimated lidar motion.
The resulting undistorted Pk is processed at a frequency of
1Hz by an algorithm knows as Lidar Mapping, which performs
the matching and registration of the undistorted cloud onto a
map. At last, using the GPS information of the vehicle pose
during previous algorithm, it is possible to coarsely project the
map of each robot into common coordinate frame for all the
robots. This projected cloud is denoted as the Pre-Local Map.

1) Lidar Odometry step: The step begins with feature
points extraction from the cloud Pk. The feature points are
selected for sharp edges and planar surface patches. Let us
define S as the set of consecutive points i returned by the
laser scanner in the same scan, where i ∈ Pk. A parameter
proposed in [6] evaluates the smoothness of the local surface
as following,

c =
1

| S | . ‖ XL
(k,i) ‖

‖
∑

j∈S,j 6=i

(XL
(k,i) −X

L
(k,j)) ‖, (1)

where XL
(k,i) and XL

(k,j) are the coordinates of two points
from the set S.

Moreover, a scan is split into four subregions to uniformly
distribute the selected feature points within the environment.
In each subregion is determined maximally 2 edge points and
4 planar points. The criteria to select the feature points as
edge points is related to maximum c values, and by contrast
the planar points selection to minimum c values. When a point
is selected, it is thus mandatory that none of its surrounding
points are already selected. Other conditions are: selected
points on a surface patch can not be approximately parallel
to the laser beam, or on boundary of an occluded region.

When the correspondences of the feature points are found
based on the method proposed in [6], the distances from
a feature point to its correspondence are calculated. Those
distances are named as dE and dH for edge points and planar
points respectively. The minimization of the overall distances
of the feature points will allow to obtain the lidar odometry.
That motion estimation is modelled with constant angular and
linear velocities during a sweep.

Let us define Ek+1 and Hk+1 as the sets of edge points and
planar points extracted from Pk+1, for a sweep k+1. The lidar
motion relies on establishing a geometric relationship between
an edge point in Ek+1 and the corresponding edge line:

fE(X
L
(k+1,i), T

L
k+1) = dE , i ∈ Ek+1, (2)

where TL
k+1 is the lidar pose transform between the starting

time of sweep k + 1 and the current time ti. TL
k+1 con-

tains data about the sensor rigid motion in 6-DOF, TL
k+1 =

https://github.com/laboshinl/loam_velodyne
http://www.cvlibs.net/datasets/kitti/eval_odometry.php


[tx, ty, tz, θx, θy, θz]
T , wherein tx, ty , and tz are translations

along the axes x, y, and z from {L}, respectively, and θx, θy ,
and θz are rotation angles, following the right-hand rule.

Similarly, the relationship between an planar point in Hk+1

and the corresponding planar patch is:

fH(XL
(k+1,i), T

L
k+1) = dH , i ∈ Hk+1, (3)

Equations (2) and (3) can be reduced to a general case for
each feature point in Ek+1 and Hk+1, obtaining a nonlinear
function, as:

f(TL
k+1) = d, (4)

in which each row of f is related to a feature point, and d
possesses the corresponding distances. Levenberg-Marquardt
method [13] is used to solve the Equation (4). Jacobian
matrix (J) of f with respect to TL

k+1 is computed. Then, the
minimization of d through nonlinear iterations allows to solve
the sensor motion estimation,

TL
k+1 ←− TL

k+1 − (JT J + λdiag(JT J))−1JT d, (5)

where λ is the Levenberg-Marquardt gain.
Finally, the Lidar Odometry algorithm produces a pose

transform TL
k+1 that contains the lidar tracking during the

sweep between [tk+1 , tk+2] and simultaneously an undis-
torted point cloud P̄k+1. Both outputs will be used by the
Lidar Mapping step, explained in the next section.

2) Lidar Mapping step: This algorithm is used only once
per sweep and runs at a lower frequency (1 Hz) than the
Lidar Odometry step (10 Hz). The technique matches, registers
and projects the cloud P̄k+1 provided by previous step (Lidar
Odometry) as a map into the own coordinates system of a ve-
hicle, defined as {V }. To understand the technique behaviour,
let us defined Qk as the point cloud accumulated until sweep
k, and TV

k as the sensor pose on the map at the end of sweep
k, tk+1. The algorithm extends TV

k for one sweep from tk+1 to
tk+2, to get TV

k+1, and projects P̄k+1 on the robot coordinates
system {V }, denoted as Q̄k+1. Then, by optimizing the lidar
pose TV

k+1, the matching of Q̄k+1 with Qk is obtained.
In this step the feature points extraction and the finding

feature points correspondences are calculated in the same way
as in previous step (Lidar odometry), the difference just lies
in that all points in Q̄k+1 share the time stamp, tk+2.

In that context, nonlinear optimization is solved also by
the Levenberg-Marquardt method [13], registering Q̄k+1 on
the a new accumulated cloud map. To get a points uniform
distribution, down-sampling process is performed to the cloud
using a voxel grid filter [14] with a voxel size of 5 cm cubes.

Finally, since we have to work with multiple robots, we use
a common coordinates system for their maps, {W}, coming
from rough GPS position estimation of the 1st accumulated
cloud frame Qk.

B. Local Mapping Stage

In this section the Local Mapping is detailed, considering
that the process is executed on the robot “i” with a shared map
by robot “n” (see Figure 3).
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Fig. 3. Architecture of Local Mapping Stage for one robot “i”, receiving
map data from another robot “n”.
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Fig. 4. Graphical representation of the Map Sharing technique (Top view
of plane XY). Aminx, Amaxx, Bminx and Bmaxx represent the point
cloud limits along the x-axis.

1) Map Sharing Step: When the generation of Pre-Local
Maps is done, the robots would have to exchange their maps
to start the maps alignment process. In several cases the
sharing and processing of maps of large dimensions can affect
negatively the performance of the system with respect to
runtime and memory usage. A sharing technique is presented
in order to overcome this problem, in which each vehicle
builds only sends a certain part of its map to the other robots.
When the maps are ready for transferring, they are compressed
in octree format using OctoMap library [8] in order to optimize
the robot-communication.



The proposed sharing technique is based on the method
developed in [15]. Figure 4 depicts the behaviour, wherein
point clouds A and B represent the Pre-Local Maps from two
robots “i” and “n” respectively. In each robot the algorithm
first receives only information about the 3D limits of the
maps (i.e. bounding cubic lattice of the point clouds) and then
decides what part of its map will be shared to the other robot.
These limits were determined previously using the function
GetBounds() that returns two vectors: in the first one Amin,
their components represent the lowest displacement from the
origin along each axis in the point cloud; and the other vector
Amax is related to the point of the highest displacement.

Algorithm 1: Selection of Point Cloud to share with another
robot.

Pseudo-code of the map sharing step is described in Al-
gorithm 1. Inside the code, the function GetV alues() sorts
in ascending order the array of components along each axis
of the vectors Amin, Amax, Bmin, Bmax and returns the
2nd and 3rd values from this sorted array, denoted (V 2) and
(V 3) respectively. Next, for each axis, the average of the
two values obtained by the function GetV alues() is used
in order to determine the Cartesian coordinates (Cx,Cy ,Cz)
of the geometric center of the sharing region (S). Actually,
this map sharing region is a cube whose edge length 2L is
determined iteratively. Points from A contained in this cube
region are extracted to generate a new point cloud Asel. In
each iteration the cube region is reduced until the number
of points from Asel is smaller than the manual parameter

Npmax, which represents the number of points maximum that
the user wants to exchange between robots. Once the loop
ends, Asel is sent to the other robot. Similarly on the other
robotic platform “n”, the points from B included in this region
are also extracted to obtain and share Bsel with the another
robot “i”. Then, it is worth to remind, the clouds Asel and Bsel

are encoded and sent in octree format to reduce the usage of
bandwidth resources of the multi-robot network. Then maps
are decoded and reconverted in 3D point cloud format to be
used in the next Registration step. Pointcloud-octree encoding
and decoding were realized using ROS nodes supported on
OctoMap library [8].

2) Registration Step: The intersecting volumes of the two
maps Asel and Bsel are computed and denoted as Aint and
Bint, obtained from the exchanged map bounds [9]. In order
to improve the computation speed, point clouds Aint to Bint

first go through a down-sampling process to reduce the number
of points in the alignment of our clouds. Feature descriptors
as surface normals and curvature are used to improve the
matching, which is the most expensive stage of the regis-
tration algorithm [16]. These generated normal-point clouds
AintN and BintN are then used by Iterative Closest Point
(ICP) algorithm [17]. This method refines an initial alignment
between clouds, which basically consists in estimating the best
transformation to align a source cloud BintN to a target cloud
AintN by iterative minimization of an error metric function.
At each iteration, the algorithm determines the corresponding
pairs (b’, a’), which are the points from AintN and BintN

respectively, with the least Euclidean distance.
Then, least squares registration is computed and the mean

squared distance E is minimized with regards to estimated
translation t and rotation R:

E(R, t) =
1

Npb’

Npb’∑
i=1

‖ a’i − (R b’i + t) ‖2, (6)

where Npb′ is the number of points b’.
The resulting rotation matrix and translation vector can be

express in a homogeneous coordinates representation (4×4
transformation matrix Tj) and are applied to BintN . The
algorithm then re-computes matches between points from
AintN and BintN , until the variation of mean square error
between iterations is less than an defined threshold. The final
ICP refinement for n iterations can be obtained by multiplying
the individual transformations: TICP =

∏n
j=1 Tj . Finally the

transformation TICP is applied to the point cloud Bsel to
align and merge with the original point cloud A, generating
the Local Map AL then. Each robot thus performed its own
merging according to limited data shared from other agents
within communication range.

IV. RESULTS

In this section we show results validating the presented
concepts and the functionality of our system. As we consider
ground vehicles, the ENU (East-North-Up) coordinate system
is used as external reference of the world frame {W}, where



Fig. 5. Vehicles used in the tests: ZOE, FLUENCE and GOLFCAR.

Fig. 6. Paths followed by ZOE (green one), FLUENCE (red one) and
GOLFCAR robot (blue one) during experiments. Image source: Google Earth.

y-axis corresponds to North and x-axis corresponds to East,
but coinciding its origin with the GPS coordinates [Longitude:
-1.547963; Latitude: 47.250229].

In this article, our proposed framework was validated con-
sidering three vehicles for experiments, a ZOE Renault, a
FLUENCE Renault and a GOLFCAR (see Figure 5) cus-
tomized and equipped with a Velodyne VLP-16 3D lidar, with
360◦ horizontal field of view and a 30◦ vertical field of view.
All data come from the campus outdoor environment in an
area of approximately 1000m x 700m. The vehicles traversed
that environment following different paths and collected sen-
sor observations about the world, running pre-local mapping
process in real-time.

For the validation, the vehicles build clouds from different
paths (see Figure 6). Results of the Pre-Local Mapping of this
experiment are shown in Figure 7.

Fig. 7. Top view of unaligned Pre-Local Maps generated by ZOE (green
one), FLUENCE (red one) and GOLFCAR robot (blue one) projected on
common coordinate system

Figure 7 also depicts the “sharing region” determined during
the map exchange process in each robot. It was assumed that
all the vehicles have the constraint of exchanging the number
of points maximum Npmax of 410000 to simulate restrictions

in resources of bandwidth network or memory usage in robots.
The tests were divided in two. In the first one, test A, ZOE and
FLUENCE car define a meeting point to transfer their maps.
Once, ZOE car exchanges and updates its local map, a new
point of rendezvous for map sharing is determined by ZOE
and GOLFCAR in the following test B.

Since we study a decentralized case, then each robot per-
forms a relative registration process considering its Pre-Local
map as target cloud for alignment reference. The systems of
each robot executes the intersecting algorithm and then an ICP
refinement to obtain an improved transform between each map.
Figures 8 and 9 depict the intersection between the shared
point clouds during the alignment process in each robot. In
the yellow box the alignment is more appreciated. Once the
refined transformation is obtained, it is then applied to the
shared map.

Fig. 8. Test A: Alignment of the intersecting regions with ICP refinement
performed in ZOE robot, when it received the FLUENCE map (a) Green and
red maps represent the target and source clouds pre ICP, top view (b) Green
and blue maps represent the target and aligned source clouds post ICP, top
view.

Fig. 9. Test B: Alignment of the intersecting regions with ICP refinement
performed in ZOE robot, when it received the GOLFCAR map (a) Green and
red maps represent the target and source clouds pre ICP, top view (b) Green
and blue maps represent the target and aligned source clouds post ICP, top
view.

Quantitative alignment results of the ICP transformation
relatives to each robot are shown in Tables I and II. All
the ICP transformations are expressed in Euler representation
(x, y, z, roll, pitch, yaw) in meters and radians. For instance,
first row of Table I corresponds to the merging process in ZOE,
when this robot received the map shared by FLUENCE and
it aligned that map to its own pre-local map. The decentral-
ized system demonstrated alignments in opposite directions
for both robots, since we have to consider that each robot
performs the merging process considering its Pre-Local map
as target cloud for alignment reference. For instance, on Table
II for ZOE vehicle the algorithm converged to the value of
displacement of -0.1782 m and -3.2605 m along the x-axis and



y-axis respectively. On the other hand on the GOLFCAR robot,
the algorithm converged to a value of displacement of 0.2213
m and 3.3857 m along the x-axis and y-axis respectively,
reconfirming relative alignments in opposite directions.

TABLE I
TEST A: RELATIVE ICP TRANSFORMATIONS IN EULER FORMAT BETWEEN

ZOE AND FLUENCE ROBOT

Robot x y z roll pitch yaw
ZOE -1.6517 3.0966 -9.9729 0.0132 0.0730 0.0022
FLU. 4.5748 -4.4556 6.6061 -0.0054 -0.0624 -0.0084

TABLE II
TEST B: RELATIVE ICP TRANSFORMATIONS IN EULER FORMAT BETWEEN

ZOE AND GOLFCAR ROBOT

Robot x y z roll pitch yaw
ZOE -0.1782 -3.2605 1.7771 -0.0516 0.0115 0.0356
GOL. 0.2213 3.3857 -2.6070 0.0411 -0.0256 -0.0380

Fig. 10. Final 3D Local Map of ZOE robot

Figure 10 shows one of the merging results corresponding
to the ZOE robot, in which the cloud represents the final
3D local map projected on a 2D map in order to make
qualitative comparisons. Experiments showed the impact of
working with intersecting regions, since it can accelerate
the alignment process by decreasing the number of points
to compute. In the same way, tests demonstrated that our
proposed map sharing technique developed a transcendental
position in the performance of the entire mapping collaborative
system by reducing the map size to transmit. Finally, the
sharing algorithm remains a suitable candidate to exchange
efficiently maps between robots considering the use of clouds
of large dimensions.

V. CONCLUSION AND FUTURE WORK

A framework, CoMapping, was presented for decentralized
3D mapping system for multiple robots. The work has showed
that maps from different robots can be successfully merged,
from a coarse initial registration and a suitable exchange of
data volume. The system uses initially range measurements
from a 3D lidar, generating a pre local maps for each robot.
The complete system solves the mapping problem in an
efficient and versatile way that can run in computers dedicated
to three vehicles for experiments, leading to merged maps
independently on each vehicle for GPS-denied environments
all the time. Future work will focus on the analysis of maps

alignment in decentralized cases, studying the direct impacts
on the consistence of maps generated by each robot.
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