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Abstract— Single-view place recognition, that we can define
as finding an image that corresponds to the same place as
a given query image, is a key capability for autonomous
navigation and mapping. Although there has been a consid-
erable amount of research in the topic, the high degree of
image variability (with viewpoint, illumination or occlusions
for example) makes it a research challenge.

One of the particular challenges, that we address in this
work, is weather variation. Seasonal changes can produce
drastic appearance changes, that classic low-level features do
not model properly. Our contributions in this paper are twofold.
First we pre-process and propose a partition for the Nordland
dataset, frequently used for place recognition research without
consensus on the partitions. And second, we evaluate several
neural network architectures such as pre-trained, siamese
and triplet for this problem. Our best results outperform
the state of the art of the field. A video showing our results
can be found in https://youtu.be/VrlxsYZoHDM.
The partitioned version of the Nordland dataset at
http://webdiis.unizar.es/˜jmfacil/pr-nordland/.

I. INTRODUCTION

Visual place recognition consists on, having a query im-
age, retrieving from a database another image that corre-
sponds to the same place, see Fig. 1. Place recognition plays
a relevant role in several applications, e.g. mobile robotics.
To name a few, place recognition can be used for topological
mapping [1], for loop closure and drift removal in geometric
mapping [2], and for learning scene dynamics in lifelong
localization and mapping [3].

Place recognition for robotics presents multiple challenges.
For example, most of the times the places databases are
huge and the retrieval time is constrained by the real-time
operation of robots. Another relevant challenge, which is the
one we will address in this paper, is the variability in the
visual appearance of the places. The appearance variations
might have different sources: viewpoint and illumination
changes, occlusions and scene dynamics.

The appearance changes coming from different viewpoints
and illumination conditions, assuming a static scene, have
been addressed quite successfully. Local point features (e.g.,
SIFT, SURF and ORB), based on image gradients, show
a high repeatability and descriptor invariance to moderate
levels of illumination and viewpoint changes. Checking the
geometric and sequential compatibility of such local features
can improve even further their robustness [4]. Global image
features have been also used for place recognition [5],
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Fig. 1. Place recognition overview. The inputs are two; a database of
images taken in different places, and query view imaging the place to
recognize. The output is an image of the database showing the place of
the query image.

[6], showing better scalability but lower performance under
viewpoint changes or occlusions.

The classical approaches based on hand-designed low-
level features are, however, limited for the representation
of dynamic scene changes. There has been several works
aiming at designing descriptors with higher invariance to
certain transformations, either based on models (e.g., [7])
or based on learning from data (e.g., [8]). The most recent
approaches use Convolutional Neural Networks (CNNs), due
to their higher potential to learn image patterns. In this
work we explore the use of CNNs for place recognition
in the particular case of seasonal changes. Our specific
contributions over the state of the art are:

• We have trained a weather-invariant place recognition
method, based on CNNs. We use CNNs to extract
image descriptors, that we compare using the Euclidean
distance. Fig. 2 depicts some of the weather variations
considered.

• We have designed a dataset using images extracted from
the Nordland videos [9]. We propose our Nordland
dataset partition as a common framework for evaluating
place recognition.

• We have compared our results in the Nordland dataset
against other state of the art techniques. Our method
is capable of correctly recognizing 98% of the input
places in 80km routes under favorable conditions and
86% under drastic appearance changes like the ones
occurring between summer and winter.

The rest of this paper is structured as follows. Section
II analyzes the related work in place recognition. Section
III explains the development of the dataset. Section IV
introduces the neural network architectures that we have
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Fig. 2. Images from the same place in different seasons. From top-left and
clockwise: winter, summer, fall and spring. Notice the appearance change
due to different weather conditions. The images have been extracted from
the videos of the Nordland dataset.

used. Section V presents our results. Finally, in section VI
we summarize our conclusions.

II. RELATED WORK

The most common approaches to place recognition are
based on local image features using classic extractors and
descriptors. Two of the most relevant among these techniques
are FAB-MAP [10] and DBoW [4]. The performance of
these algorithms is excellent for moderate viewpoint and
illumination changes, but it decreases for other types of
appearance variations.

An alternative approximation consists in using neural
networks as feature extractors. Sünderhauf et al. analyzed
in [11] the use of neural networks for the purpose of place
recognition with promising results. [11], [12] and [13] were
the first ones to use neural networks for this purpose but
[14] and [15] were the first ones to specifically train neural
architectures to attack this problem. There is no consensus
on what kind of architecture is better for this task.

In this work we compare three different techniques that
can be considered state of the art in place recognition:
Unsupervised linear learning techniques for visual place
recognition [16], deep learning features at scale for visual
place recognition [15] and CNN for appearance-invariant
place recognition [14].

The first method [16] applied principal components anal-
ysis to reduce the dimensionality of the feature vector,
eliminating the dimensions that are affected by appearance
changes. The second method [14] used a triplet neural
network architecture to fine-tune a pre-trained model and im-
prove the robustness of the extracted features. Their network
learned to map images to a vector space where euclidean
distance represents similarity. The third method [15] trained
a deep neural network to classify the place that appeared in
a dataset of images taken from surveillance cameras.

training set
test set
discarded data

Fig. 3. Proposed dataset partition for the Nordland dataset. Top:
Geographical representation of the training (red) and test (yellow) sets.
Bottom: Index representation of the distribution, w.r.t. frame index in the
videos.

This work develops a technique similar to the one imple-
mented in [14]. As a novelty, we also train siamese neural
networks and consider different pre-trained networks.

III. THE NORDLAND DATASET: PRE-PROCESSING AND
PARTITIONS

In this work, we have used the Nordland railroad videos.
In 2012, the Norway broadcasting company (NRK) made
a documentary about the Nordland Railway, a railway line
between the cities of Trondheim and Bod. They filmed the
729km journey with a camera in the front part of the train
in winter, spring, fall and summer. The length of each video
is about 10 hours and each frame is timestamped with the
GPS coordinates.

This dataset has been used by other research groups in
place recognition, for example [14] and [16]. Each group
uses different partitions for training and test, making difficult
to reproduce the results. In this work we propose a specific
partition of the dataset and a baseline, to guarantee a fair
comparison between algorithms. Our intention is to release
the processed dataset if the paper is accepted.

A. Data pre-processing

The first step, creating the dataset, was to extract the
maximum number of images from each video. Moreover,
GPS data corruption was fixed and we also eliminated
tunnels and stations. After these steps, grabbing one frame
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Fig. 4. A sliding window of five images is considered in this work as the
same place. Notice the similarity of consecutive images. The figure is best
viewed in electronic format.

per second, we obtained 28, 865 images per video. We used
speed information from the GPS data to filter stations and a
darkness threshold to filter tunnels.

B. Dataset partitions

Fig. 3 illustrates the partition of the whole image set in the
Nordland dataset. We decided to create the test set with three
different sequences of 1, 150 images (a total of 3, 450, yellow
in the figure). The rest of the images were used for training
(24, 569, red in the figure). By using multiple sections,
the variety of places and appearance changes contained in
the test set increases. We also left a separation of a few
kilometers between each test and train section by discarding
some images in order to guarantee the difference between
test and train data.

C. Place labels

Given the similarity between consecutive images, in this
work we propose to consider that two images are of the same
place if temporally they are separated by 3 images or less.
We applied a sliding window of 5 images over the whole
dataset in order to group images taken from five consecutive
seconds. This process can be seen in Fig. 4.

IV. NEURAL NETWORK ARCHITECTURES

Fig. 5 shows the functional blocks of the proposed place
recognition method. Our goal was to train a network to ex-
tract feature vectors that are close to the ones extracted from
images of the same place, even in the presence of appearance
changes. Our similarity metric is the Euclidean distance. We
acknowledge that the distance function plays an important
role in the feature space distribution, loss and optimization
convergence. However, we preferred to focus our efforts on
other parts of the problem rather than experimenting with
other alternatives, e.g., the cosine distance.

We studied three different ways of using neural networks.
First of all, we evaluated the performance of features ex-
tracted by pre-trained networks. We then proceeded to train
siamese and triplet architectures specifically for the problem
of place recgonition.

A. Pre-trained networks

In [11], Sünderhauf et al. studied the performance of
features from different neural networks for the purpose of
place recognition. In this work, we analyzed the features
extracted by some layers of the popular VGG-16 model [17],
which was trained on Imagenet. Fig. 6 shows the structure
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Fig. 5. Overview of the place recognition algorithm. First, we extract
a descriptor for every (visited place) image in the database. Second, for
every new image (query) we extract its descriptor and compare it with
those extracted from the database. The retrieved place will be the one with
the most similar descriptor.
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Fig. 6. VGG-16 Layers. In red: Layers not used. In green: Used layers.
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Fig. 7. Siamese architecture used in our work. We show in gray the pre-
trained CNN blocks. The fully-connected layer added has 128 neurons.

of the model and the layers that we have evaluated. We
have also evaluated the performance of the same architecture
trained for scene recognition on the Places dataset.

In the rest of this paper, by extracted feature vector we
refer to the output of the neural network at the chosen layer
after the non-linear activation. In the case of convolutional
layers, we flattened the output tensor.

B. Siamese networks

Siamese neural networks, proposed in [18], are capable of
improving the robustness of pre-trained descriptors for place
recognition. We modified the VGG-16 model in order to
use a siamese architecture and added a new fully-connected
layer (without activation function) after the one that showed
the best performance in the pre-trained experiments. The
final structure is showed in Fig. 7. Training was done for 5
epochs with 834, 746 positive pairs (two images of the same
place with different appearance) and 834, 746 negative pairs
(two images of different places) taken from the previously
mentioned training dataset. We used the contrastive loss [19].
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C. Triplet networks

As mentioned in Section II, Gómez-Ojeda et al. [14] were
the first ones to train triplet networks with this purpose.
Triplet neural networks improve the results of siamese archi-
tectures by training positive and negative pairs at the same
time. Moving closer the descriptors from the same place and
apart the descriptors from different places in the same instant
leads to a more stable and efficient learning process.

In order to use a triplet architecture, we modified the
VGG-16 pre-trained model by adding a new fully-connected
layer (without activation function) after the layer that per-
formed better in the pre-trained experiments. We trained the
new layer with 834, 746 image triplets for 5 epochs. The loss
function used in this case was the Wohlhart-Lepetit loss. This
loss, proposed in [20] was also used in [14]:

E = max

{
0, 1− dn

margin+ dp

}
(1)

Where E is the loss error, dp is the distance between the
positive and neutral input, dn is the distance between the
neutral and negative input and margin is a parameter that
limits the difference between the distances.

In this function, the loss is zero when the positive pair is
closer than the negative pair plus the margin. Moreover, the
loss value is limited between 0 and 1. We set the margin
value to 1 in all our experiments.

V. EXPERIMENTAL RESULTS

In order to evaluate our deep models, we used the images
from one season as reference and images of a different season
as query (summer against winter, winter against fall, etc.).
Each image is processed by the neural network to produce
the feature vector. After the extraction, each feature vector
is compared with every feature vector of every reference
season, and the closest one is considered the place predicted
by the algorithm. This process is repeated for each one of the
3, 450 test images. The number of times that the closest place
is the correct one gives the the fraction of correct matches
fc, which is the metric that we have used.

fc =
# of correct predicted places

# of evaluated places
, (2)

It is important to note that we consider a match is correct
when the closest feature vector corresponds to a place within
a 5-frames window. The distance between the feature vectors
measures the confidence of the result and a distance threshold
can be applied to obtain precision-recall curves. We have
preferred to focus our analysis on the robustness of the
extracted features.

A. Pre-trained

Fig. 8 shows the results obtained from the original VGG-
16 pre-trained model. Out of all the studied layers, we found
that features extracted from the fourth pooling layer (pool4)
had the highest fraction of correct matches in all the season
combinations. The results are worse as the layers are closer
to the VGG-16 output. The main reason might be that, as the
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Fig. 8. Fraction of correct matches using the pre-trained VGG-16 layers
as feature extractors with summer as reference season and the other seasons
as input.
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Fig. 9. Fraction of correct matches using features from the pool4 layer of
VGG-16. We compare the Imagenet pre-trained version vs the Places dataset
pre-trained one. We show the results with summer as reference season and
the other seasons as input.

dimension of the layer decreases, some of the information
that is robust to appearance changes is lost. Moreover, the
last layers of the model contain semantic information which
is specific to the original problem.

After that, we compared the performance of the origi-
nal VGG-16 model to the VGG-16 model trained on the
Places dataset by evaluating the features extracted from
the pool4 layer. We observed that the model trained for
scene-recognition achieved better results in all the studied
combinations, as shown in Fig. 9. The main reason behind
this is that, in order to classify scenes, the internal layers
of the model have learned to extract features that are more
useful for place recognition.

In the rest of our experiments, we decided to use the fourth
pooling layer of the VGG-16 trained on the Places dataset
as the starting point. The extracted feature vectors have a
dimension of 100, 352.

B. Siamese and triplets

After several experiments, we observed that a descriptor
size of 128 is sufficiently discriminative for place recogni-
tion. Increasing the size of the layer increases the computa-
tional cost without a significant improvement in the accuracy.
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Fig. 10. Fraction of correct matches using different strategies: Pre-trained,
siamese and triplet networks (with and without fine-tuning). Top: Results
with summer as reference season and the other seasons as input. Bottom:
Results with winter as reference season and the other seasons as input.

Fig. 10 compares the results obtained with the pre-trained,
siamese and triplet architectures. The pre-trained network
only outperformed the siamese architecture in some com-
binations where summer images were used as reference. It
should be noted that the siamese feature vector has 128
dimensions, while the pre-trained one has 100, 352. Even
if the siamese network has not outperformed all the pre-
trained results, the siamese architecture has learnt to extract a
much smaller feature vector, while keeping the discriminative
information.

On the other hand, the triplet network outperformed the
siamese and pre-trained models in all the studied combina-
tions. The triplet results that we show in Fig. 10, belong
to two different experiments. In our first experiments, we
trained the newly added layer (triplet fc128 - loss Wohlhart
Lepetit). We then proceeded to train the layer while fine-
tuning the rest of the VGG-16 pre-trained structure (triplet
fc128 - loss Wohlhart Lepetit - fine-tuned). It can be observed
that the accuracy of the fine-tuned model is higher.

We conclude that the best results were obtained with
the fine-tuned triplet network, starting from the weights of
the pre-trained VGG-16-Places and adding a fully-connected
layer with an output dimension of 128.

Table I shows the fraction of correct matches achieved for
every possible combination of reference-input seasons.

C. Comparison against other approaches

Fig. 11 shows the comparison between our results, the
PCA technique of [16] and the two neural network models

TABLE I
FRACTION OF CORRECT MATCHES FOR EVERY SEASON COMBINATION.

input \reference summer fall winter spring

summer — 0.8548 0.8591 0.9545
fall 0.9777 — 0.8583 0.9562

winter 0.8597 0.9771 — 0.9545
spring 0.9336 0.94 0.8388 —
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Fig. 11. Fraction of correct matches comparison: our work, Hybridnet,
Amosnet and the unsupervised PCA technique. Top: Results with summer
as reference season and the other seasons as input. Bottom: Results with
winter as reference season and the other seasons as input.

trained in [15] (Hybridnet and Amosnet). The comparison
is made using summer and winter as the reference seasons.
Notice that our model matches or outperforms the other tech-
niques in almost every combination, and particularly in those
with drastic appearance changes. In the most challenging
cases (the ones with winter as reference) the best result is
obtained with summer and fall as input seasons, where our
model achieved 86% of correct matches while the second
best, the unsupervised PCA [16], obtained less than 66%.

The unsupervised PCA results were obtained from their
original paper [16]. For Hybridnet and Amosnet, we down-
loaded the models from the authors of [15] and tested their
performance in the test partition of our dataset.

Finally, Fig. 12 shows two examples of correct matches.
Notice that our method is robust to strong changes produced
by snow and illumination. Fig. 13 shows two examples of
incorrect matches. Notice that both are difficult even for a
human. The similarities in the geographical features of those
places make them look like the same place.
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matchinput

Fig. 12. Places correctly recognized by our algorithm. The index in the
sequence is shown at the bottom of each image.

matchinput

Fig. 13. False positive examples from our algorithm. The index in the
sequence is shown at the bottom of each image. Notice that these particular
places are difficult even for a human.

VI. CONCLUSIONS

In this work we have implemented a place recognition
method which is robust to appearance changes, in particular
to those caused by weather conditions. Our proposal works
by training a neural network to extract a descriptor, that can
be compared with others using the Euclidean distance.

Our experiments show that siamese and triplet neural
networks learn robust features to appearance changes. Triplet
neural networks achieved better results than siamese ones.

We show that a VGG-16 model trained on the Places dataset
shows a reasonable performance, improved by fine-tuning.
Finally, we have shown that our method achieves state-of-
the-art results in place recognition on the Nordland dataset.
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