Classification of Point Cloud for Road Scene Understanding with Multiscale Voxel Deep Network

> Xavier Roynard Jean-Emmanuel Deschaud François Goulette

イロト イヨト イヨト イヨト

xavier.roynard@mines-paristech.fr, jean-emmanuel.deschaud@mines-paristech.fr, francois.goulette@mines-paristech.fr

October 1, 2018

Presentation Outline

State of the Art

4 Results

▲□→ ▲圖→ ▲温→ ▲温→

🚺 Context

- State of the Art
 - Point-wise Classification
 - Region-wise Classification
 - Segmentation-based Classification
- Our Approach
 - Training on 3D point cloud scenes
 - Multi-Scale Architecture
- 4) Results
 - Results on Public Benchmarks
 - Comparison Mono/Multi-scales
- 5 Work in progress

Context

Autonomous vehicles require HD-Maps for navigation and decision-making process

A production pipeline of HD-Maps can be :

- 3D point cloud acquisition by Mobile Laser Scanning (MLS),
- Precise 3D localization of relevant objects (road signs and ground markings),
- Extraction of mobile objects,
- Detection of navigation area and buildings.

イロン イロン イヨン イヨ

State of the Art

- Point-wise Classification
- Region-wise Classification
- Segmentation-based Classification

3) Our Approach

• Training on 3D point cloud scenes

• Multi-Scale Architecture

Results

- Results on Public Benchmarks
- Comparison Mono/Multi-scales

5 Work in progress

State of the Art

Point-wise Classification

- Hand-Made Features (dimensionality attributes, multi-scale)^a,
- Deep Learning on Voxel Grid Neighborhood ^b

a. Timo HACKEE, Jan D WEGNER et Konrad SCHINDLER. "Fast semantic segmentation of 3D point clouds with strongly varying density". In : ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Prague, Czech Republic 3 (2016), p. 177–184.

b. Jing HUANG et Suya YOU. "Point cloud labeling using 3d convolutional neural network". In : Pattern Recognition (ICPR), 2016 23rd International Conference on. IEEE. 2016, p. 2670–2675.

State of the Art

Region-wise Classification

- on images : Snapnet_^a
- on voxel Grid : SEGCloud^b

a. Alexandre BOULCH, Bertrand Le SAUX et Nicolas AUDEBERT. "Unstructured point cloud semantic labeling using deep segmentation networks". In : Eurographics Workshop on 3D Object Retrieval. T. 2. 2017, p. 1.

b. Lyne P TCHAPMI et al. "SEGCloud : Semantic Segmentation of 3D Point Clouds". In : arXiv preprint arXiv :1710.07563 (2017).

State of the Art

Segmentation-based Classification

• SPGraph ^a

a. Loic LANDRIEU et Martin SIMONOVSKY. "Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs". In : arXiv preprint arXiv :1711.09869 (nov. 2017).

2 State of the Art

- Point-wise Classification
- Region-wise Classification
- Segmentation-based Classification

Our Approach

- Training on 3D point cloud scenes
- Multi-Scale Architecture

4) Results

- Results on Public Benchmarks
- Comparison Mono/Multi-scales

5 Work in progress

Our Approach

Training a Deep Neural Network on fully annotated 3D point cloud scenes

- Some challenges :
 - very unbalanced classes,
 - most represented classes are also the least geometrically diversified (groud, buildings),
 - billion of samples.
- Using all samples (points) in one epoch would be infeasible.

Proposed solution

- randomly sample N > 0 points in each class of the training dataset,
- then one epoch is : pass randomly all sampled points in the network

・ロト ・回ト ・ヨト ・

Multi-Scale Architecture

MaxPool(2)

low-definition

15cm voxels

...

Conv(32, 3, 1, 0)

Cour(32, 3, 1, 0)

Concat

-

MaxPool(2)

Cover(64, 3, 1, 0) Conv(64, 3, 1, 0)

FC(1024)

Results

Context

2 State of the Art

- Point-wise Classification
- Region-wise Classification
- Segmentation-based Classification

Our Approach

- Training on 3D point cloud scenes
- Multi-Scale Architecture

4 Results

- Results on Public Benchmarks
- Comparison Mono/Multi-scales

Work in progress

Results on Semantic3D

Per class IoU

Rank	Method	Averaged IoU	Overall Accuracy	man-made terrain	natural terrain	high vegetation	low vegetation	buildings	hard scape	scanning artefacts	cars
1	SPGraph ¹	73.2%	94.0%	97.4%	92.6%	87.9%	44.0%	93.2%	31.0%	63.5%	76.2%
2	MS3_DVS(Ours)	65.3%	88.4%	83.0%	67.2%	83.8%	36.7%	92.4%	31.3%	50.0%	78.2%
3	RF_MSSF ²	62.7%	90.3%	87.6%	80.3%	81.8%	36.4%	92.2%	24.1%	42.6%	56.6%
4	SegCloud ³	61.3%	88.1%	83.9%	66.0%	86.0%	40.5%	91.1%	30.9%	27.5%	64.3%
5	SnapNet_4	59.1%	88.6%	82.0%	77.3%	79.7%	22.9%	91.1%	18.4%	37.3%	64.4%

1. LOIC LANDRIEU et Martin SIMONOVSKY. "Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs". In : arXiv preprint arXiv:1711.09869 (nov. 2017).

2. Hugues THOMAS et al. "Semantic Classification of 3D Point Clouds with Multiscale Spherical Neighborhoods". In : arXiv preprint arXiv :1808.00495 (2018).

3. Lyne P TCHAPMI et al. "SEGCloud : Semantic Segmentation of 3D Point Clouds". In : arXiv preprint arXiv :1710.07563 (2017).

4. Alexandre BOULCH, Bertrand Le SAUX et Nicolas AUDEBERT. "Unstructured point cloud semantic labeling using deep segmentation networks". In : Eurographics Workshop on 3D Object Retrieval. T. 2. 2017, p. 1.

Xavier Roynard (Mines ParisTech)

October 1, 2018 13 / 19

Results on Paris-Lille-3D

New Benchmark for Point Cloud Classification : Paris-Lille-3D ^a :

- Training set : 140 million manually annotated points, 50 classes, 2km, 2 cities
- Test set : 30 million points, 9 classes, 2 other cities

a. X. ROYNARD, J.-E. DESCHAUD et F. GOULETTE. "Paris-Lille-3D : a large and high-quality ground truth urban point cloud dataset for automatic segmentation and classification". In : ArXiv e-prints (nov. 2017). arXiv : 1712.00032 [cs.LG].

Per class IoU

Rank	Method	Averaged IoU	ground	building	pole	bollard	trash can	barrier	pedestrian	car	natural
1	MS3_DVS(Ours)	66.89%	99.03%	94.76%	52.40%	38.13%	36.02%	49.27%	52.56%	91.3%	88.58%
2	RF_MSSF ⁵	56.28%	99.25%	88.63%	47.75%	67.27%	2.31%	27.09%	20.61%	74.79%	78.83%

5. Hugues THOMAS et al. "Semantic Classification of 3D Point Clouds with Multiscale Spherical Neighborhoods". In : arXiv preprint arXiv :1808.00495 2018).

Comparison Mono/Multi-scales

Precision and Recall on Paris-Lille-3D	
--	--

Improvement on most of the classes.

		Pr	ecision	Recall		
	Class	MS3_DVS	MS1_DVS	MS3_DVS	MS1_DVS	
h.	ground	97.74%	97.08%	98.70%	98.28%	
ι.	buildings	85.50%	84.28%	95.27%	90.65%	
	poles	93.30%	92.27%	92.69%	94.16%	
۳.	bollards	98.60%	98.61%	93.93%	94.16%	
	trash cans	95.31%	93.52%	79.60%	80.91%	
	barriers	85.70%	81.56%	77.08%	73.85%	
	pedestrians	98.53%	93.62%	95.42%	92.89%	
	cars	93.51%	96.41%	98.38%	97.71%	
-	natural	89.51%	88.23%	92.52%	91.53%	
h.	Dataset \ Method		MS3_DVS	MS1_DVS	VoxNet ⁶	

Nacan	EL Scoro
IVICAL	I I JUUE

The contribution of multi-scale network is obvious.

$\textbf{Dataset} \ \setminus \ \textbf{Method}$	MS3_DVS	MS1_DVS	VoxNet ⁶
Paris-Lille-3D	89.29%	88.23%	86.59%
Semantic3D	79.36%	74.05%	71.66%

^{6.} Daniel MATURANA et Sebastian SCHERER. "VoxNet : A 3D convolutional neural network for real-time object recognition". In : Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on. IEEE. 2015, p. 922–928

- 2 State of the Art
 - Point-wise Classification
 - Region-wise Classification
 - Segmentation-based Classification
- Our Approach
 - Training on 3D point cloud scenes
 - Multi-Scale Architecture
- Results
 - Results on Public Benchmarks
 - Comparison Mono/Multi-scales

Work in progress

Work in progress

Work in progress

- Use network architectures closer to the state of the art (Inception/ResNet).
- Adapt the Multi-Scale architecture to U-Net networks for semantic segmentation.
- Get closer to real-time inference with an Octree structure.
- Ensemble on several networks or several orientations of input point cloud.

・ロト ・回ト ・ヨト ・

Thank you!

Questions ?

・ロト ・回ト ・ヨト ・ヨト

Bibliographie

Bibliographie

Alexandre BOULCH, Bertrand Le SAUX et Nicolas AUDEBERT. "Unstructured point cloud semantic labeling using deep segmentation networks". In : Eurographics Workshop on 3D Object Retrieval. T. 2. 2017, p. 1.

Timo HACKEL, Jan D WEGNER et Konrad SCHINDLER. "Fast semantic segmentation of 3D point clouds with strongly varying density". In : ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Prague, Czech Republic 3 (2016), p. 177–184.

Jing HUANG et Suya YOU. "Point cloud labeling using 3d convolutional neural network". In : Pattern Recognition (ICPR), 2016 23rd International Conference on. IEEE. 2016, p. 2670–2675.

Loic LANDRIEU et Martin SIMONOVSKY. "Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs". In : arXiv preprint arXiv:1711.09869 (nov. 2017).

Daniel MATURANA et Sebastian SCHERER. "VoxNet : A 3D convolutional neural network for real-time object recognition". In : Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on. IEEE. 2015, p. 922–928.

X. ROYNARD, J.-E. DESCHAUD et F. GOULETTE. "Paris-Lille-3D : a large and high-quality ground truth urban point cloud dataset for automatic segmentation and classification". In : ArXiv e-prints (nov. 2017). arXiv : 1712.00032 [cs.LG].

Lyne P TCHAPMI et al. "SEGCloud : Semantic Segmentation of 3D Point Clouds". In : arXiv preprint arXiv :1710.07563 (2017).

Hugues THOMAS et al. "Semantic Classification of 3D Point Clouds with Multiscale Spherical Neighborhoods". In : arXiv preprint arXiv: 1808.00495 (2018).