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Minimization

Minimization problem:

q̂ = arg min
q

E (q) = arg min
q

n

∑
i=1

d(q; pi ,M)

Euclidean distance Orthogonal distance
d(q, pi ,M) = ‖mj − ∆Tpi‖2 d(q, pi ,M) = ((mj − ∆Tpi) · nj)

2

Transformation:

∆T =

 cos(∆θ) −sin(∆θ) ∆x
sin(∆θ) cos(∆θ) ∆y

0 0 1
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Minimization using polynomial roots

With q4D = [x y cos (θ) sin (θ)]T{
minq4D E (q4D) = qT

4DAq4D + bT q4D + c

subject to qT
4DWq4D = 1

A. Censi. An ICP variant using a point-to-line metric. In IEEE
International Conference on Robotics and Automation, pages 19–25,
May 2008.
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Minimization using pseudo-inverse matrix

Using the 1st order small-angle approximation:

min
q
‖Aq − b‖2

Then
q̂ = pinv(A)b

K.L. Low. Linear Least-Squares Optimization for Point-to-Plane ICP
Surface Registration. Technical Report TR04-004, Department of
Computer Science University of North Carolina at Chapel Hill,
February 2004.
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Covariance matrix approximation

Σ̂ = E(q̂)
n−k

(
∂2E(q̂)

∂q2

)−1

E(q): cost function,
n: number of LiDAR Points
k : number of parameters (3 in 2D)

O. Bengtssons and A.J. Baerveldt. Robot localization based on
scan-matching-estimating the covariance matrix for the IDC
algorithm. Robotics and Autonomous Systems, 44(1):29–40, July
2003.
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Errors and consistencies

Consistency test:

(eqt −e q̂t)
T ˆeΣt

−1
(eqt −e q̂t) < χ2

3,0.05

ICP ICPP PLICP mixICP
Polynomial ¯‖ε‖ (cm) 8.2 7.8 13.7 11.0

minimization consistency (%) 85.5 58.8 69.8 70.0
Pseudo-inverse ¯‖ε‖ (cm) 8.2 7.8 11.5 10.8

minimization consistency (%) 93.5 83.9 91.6 89.8

The minimization using pseudo-inverse matrix with point-to-line
matchings gives the best consistencies.
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Conclusion

l The relative pose and covariance matrix estimation using an
iterative minimization algorithm was tested with different matching
and minimization methods.

l The geometry of the vehicle is well represented by the point-to-line
matching. The approximation of the covariance matrix is then more
consistent.

l The minimization using a pseudo-inverse matrix formulation is more
accurate and consistent.

l When two sides of the vehicle are seen by the perception sensor,
the estimated pose becomes more accurate.
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