Towards Uncertainty-Aware Path Planning On Road Networks Using Augmented-MDPs

Lorenzo Nardi and Cyrill Stachniss

Navigation under uncertainty

`B` is the most likely position

If the robot is at `A` instead

Safer to go up and turn at `C`

Safer to go up and turn at `C`

Objective

Select actions that reduce the risk to make mistakes during navigation with large position uncertainty

Planning on road networks

Planning on road networks

Markov Decision Process (MDP)

Optimal actions at intersections

MDP state is fully observable

Uncertainty is ignored

Uncertainty-aware planning

- Reduce the risk to make wrong navigation decisions
- Consider position uncertainty during planning
- General formulation as Partially Observable MDPs or **POMDPs**
- POMDPs are hard to solve for real-world applications

Augmented-MDPs (A-MDP)

- Efficient POMDPs approximation
- Augment MDP state space with position uncertainty
- Approximate state estimate during planning with isotropic Gaussian

Transitions between beliefs

Localizability information Estimate the localization accuracy

OpenStreetMap

Vysotska et al. 2017

Localizability information Estimate the localization accuracy

 Image: marked system
 high

 Image: marked system
 low

 Image: marked system
 Image: marked system

OpenStreetMap

EKF prediction + Localizability Estimate the **belief propagation** $p(x_t \mid x_{t-1}, u_t, \mathcal{Z}) = \mathcal{N}(\hat{\mu}_t, \, (\hat{\Sigma}_t^{-1} + \Sigma_{\hat{\mu}_t, \mathcal{Z}}^{-1})^{-1})$ \boldsymbol{S} \boldsymbol{U} high low Z

EKF prediction + Localizability Estimate the **belief propagation** $p(x_t \mid x_{t-1}, u_t, \mathcal{Z}) = \mathcal{N}(\hat{\mu}_t, \, (\hat{\Sigma}_t^{-1} + \Sigma_{\hat{\mu}_t, \mathcal{Z}}^{-1})^{-1})$ \boldsymbol{S} \boldsymbol{U} high $p(x \mid s, a)$ low Z

Transition probability

According to **Bhattacharyya distance** between **posterior** and **output state**

Augmented-MDP

- Transitions between beliefs
- Rewards minimize the travel time

Augmented-MDP

- Transitions between beliefs
- Rewards minimize the travel time
- Representation analogous to MDPs
- But larger number of states
- Solve using Policy Iteration

Augmented-MDP

- Transitions between beliefs
- Rewards minimize the travel time
- Representation analogous to MDPs
- But larger number of states
- Solve using Policy Iteration

Optimal policy **minimizes travel time** while **reducing the mistakes** during navigation

Shortest path policy

Safest path policy

Safest path, large uncertainty Η Ρ J F \mathbf{S} goal Ε Κ $\mathbf{Q} ullet$ \mathbf{T} • M 1 0 Т U • N V В W A • () <u>10 m</u> start 47

Safest path, large uncertainty Η Ρ J F \mathbf{S} goal \mathbf{E} Κ $\mathbf{Q} ullet$ $\mathbf{1}$ \mathbf{T} • M 1 D 0 Т U • N V В W A • () <u>10 m</u> start 48

Safest path, large uncertainty Η Ρ J F \mathbf{S} goal Ε Κ $\mathbf{Q} ullet$ \mathbf{T} • M 1 D 0 Т U • N V В W A • () <u>10 m</u> start 49

Safest path, small uncertainty Η Ρ **_** J F S goal Ε Κ $\mathbf{Q} ullet$ • M 1 D 0 Τ U • N V В W 🖕 Α • 0 <u>10 m</u> start 52

Safest path, small uncertainty Η Ρ **_** J F S goal E Κ $\mathbf{Q} ullet$ \mathbf{T} • M 1 0 Т U • N V В W 🖕 A • 0 <u>10 m</u> start

Shorter avg. travel time than the shortest and safest path policy

Summary

- Planning on road networks explicitly considering position uncertainty
- Augmented-MDP approximates efficiently POMDP
- Localization prior estimates belief propagation through the network
- Policy trades-off safety and travel time given the current belief

Thank you for your attention