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Towards Uncertainty-Aware 
Path Planning On Road Networks
Using Augmented-MDPs
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`B` is the most likely position
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If the robot is at `A` instead
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Safer to go up and turn at `C`
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Safer to go up and turn at `C`
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Objective
Select actions that reduce the risk 
to make mistakes during navigation 

with large position uncertainty
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Planning on road networks
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Planning on road networks
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Markov Decision Process (MDP)
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Optimal actions at intersections
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MDP state is fully observable
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Uncertainty is ignored
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Uncertainty-aware planning

 Reduce the risk to make wrong 
navigation decisions
 Consider position uncertainty

during planning
 General formulation as Partially 

Observable MDPs or POMDPs
 POMDPs are hard to solve for 

real-world applications
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Augmented-MDPs (A-MDP)

 Efficient POMDPs approximation
 Augment MDP state space with 

position uncertainty
 Approximate state estimate during 

planning with isotropic Gaussian
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Transitions between beliefs

MDP A-MDP
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Localizability information

Estimate the localization accuracy

Vysotska et al. 2017OpenStreetMap
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Localizability information

Estimate the localization accuracy
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EKF prediction + Localizability

Estimate the belief propagation
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EKF prediction + Localizability

Estimate the belief propagation
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Transition probability

According to Bhattacharyya distance
between posterior and output state
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Augmented-MDP 

 Transitions between beliefs
 Rewards minimize the travel time
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Augmented-MDP 

 Transitions between beliefs
 Rewards minimize the travel time
 Representation analogous to MDPs
 But larger number of states
 Solve using Policy Iteration

Optimal policy minimizes travel 
time while reducing the mistakes
during navigation
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Uncertainty-aware decisions
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Uncertainty-aware decisions

0

1

goal

A

B

C

A

B

C



30

goal

start



31

goalgoal

Shortest path policy
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Shortest Path Policy
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Shortest Path Policy
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Shortest Path Policy
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Shortest Path Policy
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Shortest Path Policy
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Shortest Path Policy
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Shortest Path Policy
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Safest path policy
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Safest path, large uncertainty
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Safest Path, High Uncertainty 
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Safest Path, High Uncertainty 
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Shortest Path Policy
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Shortest Path Policy
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Shortest Path Policy
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Shortest Path Policy
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Shortest Path Policy
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Shortest Path Policy
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Our approach, large uncertainty 
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Safest Path, High Uncertainty 
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Shorter avg. travel time than the 
shortest and safest path policy
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Summary

 Planning on road networks explicitly 
considering position uncertainty
 Augmented-MDP approximates 

efficiently POMDP
 Localization prior estimates belief 

propagation through the network
 Policy trades-off safety and travel 

time given the current belief
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Thank you for your attention


