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Modeling and Notation
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Car-Like Robot Rear-Wheel Driving
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‘ Where v and ¢ are the driving and
X &0 steering velocities.

Figure: Kinematic model diagram for a
car-like rear-wheel driving robot
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Multi-sensor modeling

In a static environment, the sensor feature derivative can be expressed as':
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Figure: Multi-sensor model
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1Kermc:)rgant and Chaumette, “Dealing with constraints in sensor-based robot control”.
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Under a planar world assumption:

Figure: Multi-sensor model . . L
$i=Livi= L; "Tw Vi (5)
(d; x3)(3x3)(3x1)
$;=Liv; = L; T ¥ 2 . T
T (4ix6)(6x6) (6% 1) @) where Vi, = [vz,,, vy, 0]

1Kermc:)rgant and Chaumette, “Dealing with constraints in sensor-based robot control”.

3 of 16
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Multi-sensor modeling

Assuming vy, = 0 (no slipping nor skidding)

Vi = [Va,,, 0]7 (6)
with dim(Lg) = (d; x 2) and v,, = v.
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Modeling and Notation
ooe

Multi-sensor modeling

Assuming vy, = 0 (no slipping nor skidding)

Vm = [vzma Q]T (6)

with dim(Lg) = (d; x 2) and v,, = v.

Control input

Vy = [’U, ¢]T (7)
with
- vtan(¢) (8)
lwb
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Interaction Model
€00

Interaction Model

The sensor signals s;, and reduced inte-
J

raction matrix Iv%j are defined respectively

as 2:
sic, = [0;(1),'w;(2), ';3)] " (9)
0 0 iu]( )
L = 0 0 —u(1)
_lgj(2) iHj(l) 0

Figure: Sensors’ configuration and
sensor features

2AndrefF, Espiau, and Horaud, “Visual Servoing from Lines".
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Interaction Model
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Task

Task sensor features

s = [537 R Sg]T = [s1, SQ]T = [Slﬁofﬁ 82,5 S2£2]T (11)
1

Figure: Task features used
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Task sensor features
t t 1T
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Task

Task sensor features
T

St = [Sﬁ, ey 89] = [Sl, SQ]T = [Slﬁ‘{fﬁ 5251 X Sgﬁz]T (11)
° Ivlﬁ is computed at each iteration.

e L} is computed by a 2nd order
Approximation with

approximation. \4{7\% it
4t N

w F \h%
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w,

5. 50 5t s

Wt = d‘i‘ag(wiv, cwh) (12)

where w}-w}, w§ and w} are constant while

the values of w! Vi = {4,5,7,8} are computed

Figure: Task features used

using a smooth weighting function.
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Interaction Model
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Constrained sensor features

Constrained sensor features

s¢ ::[si,...,s{O]T ::[53,55,56]T (13)

with

S3 = [3h2(3)7 3h4(3)7 3X27 3Y27 Bdlatg]T
(14a)
S5 = 5h3(3) (14b)

s6 = [*h2(3),°hs(3),° X3, °Ya] T, (14c)

Figure: Constraints for backward
non-parallel parking maneuvers
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Control structure

Optimization

v, (n)

System

Model

Figure: Control structure3

Sa(1) = smp(n) = s"(n) —s(n)

(15)

3Guillaume Allibert, Estelle Courtial, and Francois Chaumette. “Predictive Control for Constrained

Image-Based Visual Servoing”. In: IEEE Trans. on Robotics 26.5 (2010), pp. 933-939.
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Control
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Constraint handling

Smin < 8% < Siax (16)
|| < Umax (17)
|¢] < Pmax (18)
(Vn—1 — Adec) < v < (V-1 + Agee) (19)
(-1 —A¢) < dn < (Pn-1+ Ay) (20)
(o1 = Bg) < dn < (oot + A). (21)
By writing the constraints (16)-(21) as nonlinear functions:
C(vr) <0 (22)

a constraint domain C can be defined.
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Control
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Mathematical formulation

Control law
min J(v,)
v, €C (23)
with
n+Np
Tvi) = Y [sa—smp ()] QU )Iss — smp(5)] (24)
j=n+1
and

v ={vr(n),vi(n+1),...,v.(n+ N),...,ve(n+ N, — 1)} (25)

subject to
Smp(7) = Smp(J = 1) + Le(j = DTsvim (i — 1) (26a)
Smp(d) = Smp(J — 1) + Le(§ — DTsvim (5 — 1) (26b)
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Control
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Mathematical formulation (contd)

Ql diag(w’i, ey wé) ‘ 03><6
= - 27
Q O6x3 ‘ Q2 diag(wl, . .., w}) (20

It should be noted that, from v, (n + N.) to v,.(n + N, — 1), the
control input is constant and is equal to v,.(n + N.), where N, is the
control horizon.
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Individual cases - MATLAB simulations

Constrained sensor signals
10

Parking maneuver evolution ~ Linear velocity evolution (km/h)
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Figure: Constrained L backward parking maneuver. Initial pose = (8m, 4.6m, 0°)
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Individual cases - MATLAB simulations

Constrained sensor signals
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Figure: Constrained diagonal backward parking maneuver. Initial pose = (1.3m, 4.5m, 0°)
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Results
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Exhaustive simulations
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(a) Backward perpendicular case (b) Backward diagonal case

Figure: Initial orientation (87—¢ = 0). Parking spot length = 4m and width = 2.7m
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Real experimentation results
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Conclusions
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Conclusions

e The changes in the interaction model with respect to an approach
without prediction are small.
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Conclusions
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Conclusions

e The changes in the interaction model with respect to an approach
without prediction are small.

e Exhaustive simulations show that the MSBPC is able to park the
vehicle successfully from virtually any sensible initial position.

e The presented approach has been tested several times using real
vehicles with positive results.
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