10th Workshop on Planning, Perception and Navigation for Intelligent Vehicles

ISA² - Intelligent Speed Adaptation from Appearance

PPNIV'18

ROS

Carlos Herranz-Perdiguero

Roberto J. López-Sastre

ISA stands for ...

- Intelligent Speed *Adaptation* (or *Assistance*)
 - It is any system that ensures that vehicle speed does not exceed a safe or legally enforced speed.

Why ISA?

5.500 pedestrians killed in 2013

2000 cyclist killed in 2013

26.000 people killed in 2013

Speed is the primary factor in 1/3 of all fatal collisions Up to 60% of drivers exceed speed limits

Why ISA?

ISA could cut collisions by 30%

ISA could cut deaths by 20%

Cars fitted with ISA could reduce CO2 emissions by 8%

How does an ISA system works today?

GPS Based

1 Car receives position information via GPS

2 Speed limit is updated from a digital map

This is also combined with traffic sing recognition solutions

But this model has limitations

GPS information is not accurate

- Poor satellite visibility
- Meta information might be not correctly updated
- Precision is sometimes a problem → frontage road vs. highway

But this model has limitations

This type of solution does NOT take into account the real traffic situation

ISA²

Intelligent Speed Adaptation from Appearance

We introduce the idea of learning a regression model able to map the images (appearance) to a speed adequate to the traffic situation.

Great level of difficulty – even for a human!

A problem that it is ill-posed in its nature

Single RGB Image

Depth Map

ISA² – The Dataset

- 5 video sequences (3 urban + 2 highway)
- 149.055 annotated frames (proper speed km/h)
- Our driver has carefully tried to adjust the speed of the vehicle to what he considers to be an appropriate speed, according to the traffic situation.
- A novel version will be released soon (more videos and code).

ISA² – The models

Approach 1 – A CNN for the estimation of the speed

ISA² – The models

Approach 2 – ISA² from semantic segmentation

- Evaluation metric: **MAE** (Mean Average Error)
- Experimental setup
 - Caffe implementation of all the solutions.
 - Trained for 4k interations
 - → SGD with momentum (0.9) and batch size 20
 - → Learning rate 10⁻⁴ fo 2k iterations and then 10⁻⁵
 - Different regressors for Approach 2 → Linear, SVR, Lasso, Boosting Trees

Experiment 1 \rightarrow **Joint training**

We train **just one regression** function for both urban and highway scenarios

	Method	Urban	Highway	Average
Approach 1	VGG-16	12.58	11.57	12.07
	ResNet-101	11.49	11.87	<u>11.68</u>
Approach 2	SS+Linear	9.15	15.78	12.46
	SS+SVR	10.69	16.76	13.72
	SS+Lasso	8.74	18.13	13.43
	SS+B. Trees	9.78	13.86	11.82

Experiment 2 \rightarrow **Independent training**

We train **two regression** functions independently (one for urban and one for highway scenarios)

	Method	Urban	Highway	Average
Approach 1	VGG-16	11.86	12.48	12.17
	ResNet-101	9.59	12.79	11.19
Approach 2	SS+Linear	6.02	9.54	7.78
	SS+SVR	8.14	9.23	8.68
	SS+Lasso	6.67	8.72	7.69
	SS+B. Trees	8.81	7.76	8.28

2500 3000 350

Frames

Highway results

Proper Speed: 74 km/h Estimated Proper Speed: 78 km/h

Proper Speed: 75 km/h Estimated Proper Speed: 79 km/h

Proper Speed: 82 km/h Estimated Proper Speed: 87 km/h

Proper Speed: 69 km/h Estimated Proper Speed: 94 km/h

Proper Speed: 65 km/h Estimated Proper Speed: 83 km/h

Highway results Good estimations

Urban results

Urban results

Proper Speed: 21 km/h Estimated Proper Speed: 21 km/h

Urban Results Red traffic lights

10th Workshop on Planning, Perception and Navigation for Intelligent Vehicles

ISA² - Intelligent Speed Adaptation from Appearance

PPNIV'18

ROS

Carlos Herranz-Perdiguero

Roberto J. López-Sastre

