End-to-End Deep Neural Network Design for Short-term Path Planning

MQ Dao, D. Lanza, V. Fremont

Monday, November 4, 2019

 Map-based navigation (R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza (2011). Introduction to autonomous mobile robots.)

See-think-act scheme

• End-to-end learning-based navigation

 Map-based navigation (R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza (2011). Introduction to autonomous mobile robots.)

End-to-end learning-based navigation

End-to-end learning limitation

• No interpretable intermediate result

Not able to predict vehicle speed

End-to-end learning limitation

• No interpretable intermediate result

Not able to predict vehicle speed

Proposed solution for speed prediction

Motion planning pipeline for reactive navigation

- Advantage
 - Ease the need of using recurrent layers to learn vehicle speed
 - Able to account for dynamic constraint
 - Increase the reliability fo the final output

Proposed solution for speed prediction

Motion planning pipeline for reactive navigation

- Advantage
 - · Ease the need of using recurrent layers to learn vehicle speed
 - Able to account for dynamic constraint
 - Increase the reliability fo the final output

Formulation of learning problem

• Learning a path by learning a sequence of steering angle C. Hubschneider et al. (2017). "Integrating end-to-end learned steering into probabilistic autonomous driving". In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC)

$$\mathsf{Path} = [\delta_0, \delta_1, \dots, \delta_n] \tag{1}$$

Relation between 2 consecutive waypoints

Formulation of learning problem

- Learning a path by learning a sequence of steering angle
- Learning a classifier for steering angle prediction

A class spans an 1-degree interval of the steering angle range

• DroNet architecture A. Loquercio et al. (2018). "DroNet: Learning to Fly by Driving". In: *IEEE Robotics and Automation Letters*

• Our architecture: ResNet body + 5 classifiers made of 2 dense layers

• DroNet architecture A. Loquercio et al. (2018). "DroNet: Learning to Fly by Driving". In: *IEEE Robotics and Automation Letters*

• Our architecture: ResNet body + 5 classifiers made of 2 dense layers

• DroNet architecture A. Loquercio et al. (2018). "DroNet: Learning to Fly by Driving". In: *IEEE Robotics and Automation Letters*

Our architecture: ResNet body + 5 classifiers made of 2 dense layers

Dao, Lanza, Fremont

Path Planning Net

• Detail of ResNet body A. Loquercio et al. (2018). "DroNet: Learning to Fly by Driving". In: *IEEE Robotics and Automation Letters*

Stage	Layer	Number	Kernel	Stride	Padding
		of kernels	size	Stride	Padding
1	Conv2D_a	32	3	2	same
1	Conv2D_b	32	3	1	same
1	Conv2D_c	32	1	2	same
2	Conv2D_a	64	3	2	same
2	Conv2D_b	64	3	1	same
2	Conv2D_c	64	1	2	same
3	Conv2D_a	128	3	2	same
3	Conv2D_b	128	3	1	same
3	Conv2D_c	128	1	2	same

Dataset

Udacity dataset

• Expected input - output

Dataset

Udacity dataset

• Expected input - output

Dataset

Udacity dataset

• Expected input - output

Handling dataset imbalance

 The dominance of classes corresponding to small steering angles due to the lack of sharp turns

Handling dataset imbalance

- The dominance of classes corresponding to small steering angles
- Class weight calculated by median frequency balancing

$$w(i) = \frac{\text{median frequency of the dataset}}{\text{frequency of this class}}$$

(2)

Predicted angle distributions

Dao, Lanza, Fremont

Path Planning Net

RMSE and EVA Comparison

Model	RMSE	EVA
Constant baseline	0.2129	0
Random baseline	$\textbf{0.3}\pm\textbf{0.001}$	-1.0 ± 0.022
DroNet	0.1090	0.7370
Event-based Model	0.0716	0.8260
Head_0	0.0869	0.8933
Head_1	0.0920	0.8781
Head_2	0.1052	0.8382
Head_3	0.0820	0.9012
Head_4	0.0851	0.8943

Confusion Matrix of the 1st Classifier

ResNet Blocks Output

Input image

2nd Block

3rd Block

Demonstration Video

• Learn human driving behavior through a classification problem

• Learned non-parameterized path can be integrated into trajectory planning framework

• Improve the classification accuracy

Implement the trajectory optimization to timestamp the path

• Evaluate the performance on a real autonomous vehicle