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Introduction

* Map-based navigation (  R. Siegwart, I. R. Nourbakhsh, and
D. Scaramuzza (2011). Introduction to autonomous mobile robots.)

localization / map-building

See-think-act scheme
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Introduction

* Map-based navigation (  R. Siegwart, I. R. Nourbakhsh, and
D. Scaramuzza (2011). Introduction to autonomous mobile robots.)

localization / map-building

See-think-act scheme

e End-to-end learning-based navigation

Sensors CNN-based Steering
Network Angle
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Introduction

End-to-end learning limitation

¢ No interpretable intermediate result

Steering
Angle

CNN-based
Network
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Introduction

End-to-end learning limitation

¢ No interpretable intermediate result

CNN-based
Network

e Not able to predict vehicle speed

Steering
Angle
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Introduction

® Proposed solution for speed prediction

e —— Time- f——> velocity profile
parameterization

Motion planning pipeline for reactive navigation
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Introduction

® Proposed solution for speed prediction

e —— Time- f——> velocity profile
parameterization

CNN-based

Network path

Motion planning pipeline for reactive navigation

e Advantage

® Ease the need of using recurrent layers to learn vehicle speed
® Able to account for dynamic constraint

* |ncrease the reliability fo the final output
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Method

Formulation of learning problem

e Learning a path by learning a sequence of steering angle
C. Hubschneider et al. (2017). “Integrating end-to-end learned steering into
probabilistic autonomous driving”. In: 2017 IEEE 20th International Conference
on Intelligent Transportation Systems (ITSC)

Path:[50,51,..‘7(5n] (1)

Relation between 2 consecutive waypoints
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Method

Formulation of learning problem

e Learning a path by learning a sequence of steering angle

e [earning a classifier for steering angle prediction

Class of
CNN-based Steering
Network Angle

A class spans an 1-degree interval of the steering angle range
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Method

Model Architecture

e DroNet architecture  A. Loquercio et al. (2018). “DroNet: Learning to Fly
by Driving”. In: IEEE Robotics and Automation Letters
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Method

Model Architecture

e DroNet architecture  A. Loquercio et al. (2018). “DroNet: Learning to Fly
by Driving”. In: IEEE Robotics and Automation Letters
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e Qur architecture: ResNet body + 5 classifiers made of 2 dense
layers
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Method

Model Architecture

e Detail of ResNet body A. Loquercio et al. (2018). “DroNet: Learning to
Fly by Driving”. In: IEEE Robotics and Automation Letters

Conv2D ¢
[

—*»{ BacthNorm

RelLU

Conv2D_a H BacthNorm

Conv2D_b }—g—

Stage | Layer Number | Kernel | Stride | Padding
of kernels size Stride | Padding
1 Conv2D_a 32 3 2 same
1 Conv2D b 32 3 1 same
1 Conv2D_c 32 1 2 same
2 Conv2D_a 64 3 2 same
2 Conv2D_b 64 3 1 same
2 Conv2D_c 64 1 2 same
3 Conv2D_a 128 3 2 same
3 Conv2D b 128 3 1 same
3 Conv2D ¢ 128 1 2 same
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Method

Dataset

e Udacity dataset
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Method

Dataset

e Udacity dataset

e Expected input - output

L

Snidl:
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Method

Handling dataset imbalance

e The dominance of classes corresponding to small steering angles
due to the lack of sharp turns

percentage
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Method

Handling dataset imbalance
e The dominance of classes corresponding to small steering angles

¢ Class weight calculated by median frequency balancing

wi) = median frequency of the dataset
N frequency of this class
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Performance

Predicted angle distributions
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Performance

RMSE and EVA Comparison

] Model \ RMSE \ EVA \
Constant baseline 0.2129 0
Random baseline 0.34+0.001 | —1.04+0.022
DroNet 0.1090 0.7370
Event-based Model 0.0716 0.8260
Head_0 0.0869 0.8933
Head_1 0.0920 0.8781
Head 2 0.1052 0.8382
Head_3 0.0820 0.9012
Head 4 0.0851 0.8943
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Performance

Confusion Matrix of the 1st Classifier
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Performance

ResNet Blocks Output

Input image 1st Block 2nd Block 3rd Block
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Performance

Demonstration Video
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Conclusion

e |earn human driving behavior through a classification problem

e Learned non-parameterized path can be integrated into trajectory
planning framework
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Future Work

¢ Improve the classification accuracy

e Implement the trajectory optimization to timestamp the path

e Evaluate the performance on a real autonomous vehicle
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