
miniSAM: A Flexible Factor Graph Non-linear Least Squares
Optimization Framework

Jing Dong1 and Zhaoyang Lv2

Abstract— Many problems in computer vision and robotics
can be phrased as non-linear least squares optimization prob-
lems represented by factor graphs, for example, simultaneous
localization and mapping (SLAM), structure from motion
(SfM), motion planning, and control. We have developed an
open-source C++/Python framework miniSAM, for solving such
factor graph based least squares problems. Compared to most
existing frameworks for least squares solvers, miniSAM has (1)
full Python/NumPy API, which enables more agile development
and easy binding with existing Python projects, and (2) a wide
list of sparse linear solvers, including CUDA enabled sparse
linear solvers. Our benchmarking results shows miniSAM offers
comparable performances on various types of problems, with
more flexible and smoother development experience.

I. INTRODUCTION

Solving non-linear least squares is important to many
areas in robotics, including SLAM [1], SfM [2], motion
planning [3], and control [4], [5]. Furthermore, researchers in
these areas often use factor graphs, a probabilistic graphical
representation to model the non-linear least squares problem.
Dellaert and Kaess [1] first connected factor graphs to non-
linear least squares, and the graph inference algorithms to
sparse linear algebra algorithms.

There are existing libraries for solving non-linear least
squares problems. Existing widely used frameworks by
SLAM and SfM communities include Ceres [6], g2o [7],
and GTSAM [8]. In particular, GTSAM uses factor graph
to model the non-linear least square problems, and solves
the problems using graphical algorithms rather than sparse
linear algebra algorithms. However, for performance reasons
all existing frameworks are implemented in C++ and there-
fore have the disadvantage that they require complex C++
programing, especially when users merely want to define or
customize loss functions.

We introduce a flexible, general and lightweight factor
graph optimization framework miniSAM†. Like GTSAM,
miniSAM uses factor graphs to model non-linear least square
problems. The APIs and implementation of miniSAM are
heavily inspired and influenced by GTSAM, but miniSAM
is a much more lightweight framework, and that extends the
flexibility of GTSAM as follows:
• Full Python/NumPy API, with the ability to define

custom cost functions and optimizable manifolds to

*This work was mostly finished when both authors were PhD students
at College of Computing, Georgia Institute of Technology, Atlanta, USA.
We would like to thank Prof. Frank Dellaert and Dr. Mustafa Mukadam
giving suggestions on this work. This work received no financial support.

1thu.dongjing@gmail.com
2zhaoyang.lv@gatech.edu

†https://github.com/dongjing3309/minisam

Fig. 1: Example problems solved by miniSAM. Top: bundle
adjustment problem Trafalgar [9], camera poses are shown
in blue and landmarks are shown in red. Bottom (from left to
right): 2D pose graph problem M3500 [10], 3D pose graph
problem Sphere [10], Barrett WAM arm motion planning
problem [3].

enable faster and easier prototyping.
• A wide list of sparse linear solver choices, including

CUDA supported GPU sparse linear solvers.
• It is lightweight and requires minimal external de-

pendencies, thus making it great for cross-platform
compatibility.

In this paper, we first give an introduction to non-linear
least squares and the connection between sparse least squares
and factor graphs. Then, we introduce the features and basic
usage of miniSAM, finally we show benchmarking results of
miniSAM on various SLAM problems.

II. INTRODUCTION TO NON-LINEAR LEAST SQUARES
AND FACTOR GRAPHS

A. Non-linear Least Square Optimization

Non-linear least squares optimization is defined by

x∗ = argmin
x

∑
i

ρi
(
‖ fi(x) ‖2Σi

)
, (1)

where x ∈ M is a point on a general n-dimensional
manifold, x∗ ∈ M is the solution, fi ∈ Rm is a m-
dimensional vector-valued error function, ρi is a robust
kernel function, and Σi ∈ Rm×m is a covariance matrix.
The Mahalanobis distance is defined by ‖ v ‖2Σ

.
= vT Σ−1v

where v ∈ Rm and Σ−1 is the information matrix. If we

factorize the information matrix by Cholesky factorization
Σ−1 = RTR, where R is upper triangular, we have

‖ v ‖2Σ= vT Σ−1v = vTRTRv =‖ Rv ‖2 . (2)

If we consider the simplified case where ρi is identity and
define hi(x)

.
= Rifi(x), then Eq. (1) is equivalent to

x∗ = argmin
x

∑
i

‖ hi(x) ‖2 (3)

as per Eq. (2). If we define a linearization point x0 ∈ M,
and the Jacobian matrix of hi(x)

Ji
.
=
∂hi(x)

∂x

∣∣∣
x=x0

(4)

then the Taylor expansion is given by

hi(x0 + ∆x) = hi(x0) + Ji∆x+O(∆x2), (5)

which we can use to solve the least square problem by
searching a local region near x0, and find the solution by
iteratively solving a linearized least squares problem

∆x∗ = argmin
∆x

∑
i

‖ Ji∆x+ hi(x0) ‖2, (6)

where ∆x∗ ∈ Rn, and the solution is updated by

x∗ = x0 + ∆x∗. (7)

IfM is simply a vector space Rn then the above procedure is
performed iteratively in general by setting x0 of next iteration
from x∗ of current iteration, until x∗ converges. Trust-region
policies like Levenberg-Marquardt can be also applied when
looking for ∆x∗.

When M is a general manifold, we need to define a
local coordinate chart of M near x0, which is an invertible
map between a local region of M around x0 and the local
Euclidean space, and also an operator ⊕ that maps a point in
local Euclidean space back to M. Thus Eq. (7) on general
manifolds is

x∗ = x0 ⊕∆x∗. (8)

A simple example of ⊕ is for the Euclidean space where it
is simply the plus operator.

To solve the linear least squares problem in Eq. (6), we
first rewrite Eq. (6) as

∆x∗ = argmax
∆x

‖ J∆x+ b ‖2, (9)

where J is defined by stacking all Ji vertically, similarly
b is defined by stacking all hi(x0) vertically. Cholesky
factorization is commonly used solve Eq. (9). Since the
solution of linear least squares problem in Eq. (9) is given
by the normal equation

JTJ∆x∗ = JT b, (10)

we apply Cholesky factorization to symmetric JTJ , and we
have JTJ = RTR where R is upper triangular. Then solving
Eq. (10) is equivalent to solving both

RT y = JT b (11)
R∆x∗ = y (12)

in two steps, which can be both solved by back-substitution
given that R is triangular. Other than Cholesky factorization,
QR and SVD factorizations can be also used to solve
Eq. (9), although with significantly slower speeds. Iterative
methods like pre-conditioned conjugate gradient (PCG) are
also widely used to solve Eq. (10), especially when JTJ is
very large.

B. Connection between Factor Graphs and Sparse Least
Squares

Dellaert and Kaess [1] have shown factor graphs have
a tight connections with non-linear least square problems.
A factor graph is a probabilistic graphical model, which
represents a joint probability distribution of all factors

p(x) ∝
∏
i

pi(xi), (13)

where xi ⊆ x is a subset of variables involved in factor i,
p(x) is the overall distribution of the factor graph, and pi(xi)
is the distribution of each factor. The maximum a posteriori
(MAP) estimate of the graph is

x∗ = argmax
x

p(x) = argmax
x

∏
i

pi(xi). (14)

If we consider the case where each factor has Gaussian
distribution on fi(xi) with covariance Σi,

pi(xi) ∝ exp
(
− 1

2
‖ fi(xi) ‖2Σi

)
, (15)

then MAP inference is

x∗ = argmax
x

∏
i

pi(xi) = argmax
x

log
(∏

i

pi(xi)
)
, (16)

= argmin
x

∏
i

−log
(
pi(xi)

)
= argmin

x

∑
i

‖ fi(xi) ‖2Σi
.

(17)

The MAP inference problem in Eq. (17) is converted to the
same non-linear least squares optimization problem in Eq. 1,
which can be solved following the same steps in Section II-
A.

There are several advantages of using factor graph to
model the non-linear least squares problem in SLAM. Factor
graphs encode the probabilistic nature of the problem, and
easily visualize the underlying sparsity of most SLAM
problems since for most (if not all) factors xi are very small
sets. We give an example in the next section, which clearly
visualizes this sparsity in a factor graph.

C. Example: A Pose Graph

Here we give a simple example of using factor graph to
solve a small pose graph problem. The problem is shown in
Fig. 2a, where a vehicle moves forward on a 2D plane, makes
a 270 degrees right turn, and has a relative pose loop closure
measurement which is shown in red. If we want to estimate
the vehicle’s poses at times t = 1, 2, 3, 4, 5, we define the
system’s state variables

x = {x1, x2, x3, x4, x5}, (18)

t = 1 t = 2
t = 3

t = 4t = 5

(a) Problem

x1 x2 x3

x5 x4

Odometry Factor

Loop Closure Factor

Prior Factor

(b) Factor graph

Fig. 2: An example 2D pose graph problem, with pose
variables (shown as white circles), a prior (shown as a
blue factor), four odometry measurements (shown as black
factors) and a single loop closure measurement (shown as a
red factor).

where xi ∈ SE(2), i = 1, 2, 3, 4, 5 is the vehicle pose at
t = i. Then the factor graph models the pose graph problem
as

p(x) ∝ p(x1)︸ ︷︷ ︸
prior

p(x1, x2)p(x2, x3)p(x3, x4)p(x4, x5)︸ ︷︷ ︸
odometry

p(x2, x5)︸ ︷︷ ︸
loop closure

(19)
which is shown in Fig. 2b. As shown in Eq. (19) and Fig. 2b,
there are three types of factors: (1) A prior factor, which gives
a prior distribution on first pose, and locks the solution to a
world coordinate frame. (2) Odometry factors, which encode
the relative poses odometry measurements between t = i
and t = i+ 1. (3) A loop closure factor, which encodes the
relative poses measurement between t = 2 and t = 5.

The sparsity of the example problem is clearly shown by
the factor graph: all the factors are unary or binary. This is
actually true for all pose graph optimization problems. We
can further show the sparsity of the underlying linear system
we solve in Eq. (9) and Eq. (10)

J =

J11

J21 J22

J32 J33

J43 J44

J54 J55

J62 J65

prior

odometry

loop closure

,

(20)

H = JTJ =

H11 H12

H21 H22 H23 H25

H32 H33 H34

H43 H44 H45

H52 H54 H55

 . (21)

We can clearly see both J and JTJ have block-wise sparse
structures.

TABLE I: Features comparison across frameworks.

Ceres g2o GTSAM miniSAM
C++: Custom cost/factor • • • •
C++: Numerical jacobian • • •
C++: Auto-diff jacobian • • •
C++: Custom manifold • • • •
MATLAB: API binding •
Python: API binding •1 •1 • •
Python: Custom cost/factor •
Python: Numerical jacobian •
Python: Auto-diff jacobian
Python: Custom manifold •

1by third-party.

III. SOLVING NON-LINEAR LEAST SQUARE PROBLEMS
WITH MINISAM

In this section we give some details about our miniSAM
library and the basic introduction of how to use miniSAM.
miniSAM is implemented with C++11, and provides both
native C++ API and Python API provided by pybind11 [11].
miniSAM is a very lightweight library: the core implemen-
tation has only 8k lines of C++ code, plus 4k lines of test
code and 2k lines of Python wrapper code. Also miniSAM
requires minimal external dependencies (only Eigen [12]
linear algebra library is required). This makes miniSAM
great for cross-platform compatibility. Currently miniSAM
compiles with most major compliers (GCC, Clang, Microsoft
Visual C++) on most major OSs (Linux, macOS, Windows).

One of the most important features of miniSAM is its
high flexibility with the Python interface, which provides
the ability to create custom factors and manifolds directly
in Python. Although most existing frameworks provide (or
by third-parties) binding to script languages (like Python
and MATLAB) that enable them to define graph structures,
they all lack ability to directly define factors and manifolds
in script languages. To use custom factors or manifolds in
script languages, users need to first define them in C++,
then bind the interfaces to script languages, which is in-
convenient. Table I gives a comparison of multiple features
in C++/Python/MATLAB between miniSAM and existing
frameworks.

In the rest of this section we discuss three major use cases
of miniSAM: how to define and solve factor graphs/least
square optimization problems, create custom factors/cost
functions, and create custom optimizable manifolds.

A. The Pose Graph Example

Here we give an example on how to use miniSAM to solve
the pose graph example discussed in Section II-C. Example
Python code solving this pose graph example in Fig. 2 is in
Snippet 1 in the Appendix.

In the first step we construct the factor graph. In miniSAM
data structure FactorGraph is used as the container for
factor graphs. In miniSAM each variable is indexed by a
key, which is defined by a character and an unsigned integer
(e.g. x1). Each factor has its key list that indicates the
connected variables, and its loss function that has covariance
Σi and optional robust kernel ρi (Cauchy and Huber robust

loss functions have been implemented in miniSAM). In the
pose graph example two types of factors are used: unary
PriorFactor and binary BetweenFactor.

In the second step we provide the initial variable values
as the linearization point. In miniSAM variable values are
stored in structure Variables, where each variable is in-
dexed by its key. Finally, we call a non-linear least square
solver (like Levenberg-Marquardt) to solve the problem.
Result variables are returned in a Variables structure with
status code.

B. Define Factors
Here we discuss how to define a new factor in miniSAM.

As mentioned defining a new factor can be done in both
C++ and Python in miniSAM, by inheriting from Factor

base class. The implementation of a factor class includes
an error function error() that defines fi(xi), which re-
turns a Eigen::VectorXd in C++, or a NumPy array in
Python. And Jacobian matrices function jacobians() that
defines ∂fi(xi)/∂xi for each variable in xi, which return
a std::vector<Eigen::MatrixXd> in C++, or a list of
NumPy matrices in Python. We show an example prior factor
on SE(2) in Python in Snippet 2.

Analytic Jacobians ∂fi(xi)/∂xi is usually quite complex
for non-trivial factors, and is the main bottleneck for faster
prototyping. miniSAM provides a solution by inheriting
from NumericalFactor base class, numerical ∂fi(xi)/∂xi
through finite differencing will be evaluated during op-
timization, thus saving developer’s time deriving analytic
Jacobians. We leave automatic differentiation for Jacobian
evaluation as future work.

C. Define Optimizable Manifolds
miniSAM already has build-in support for optimizing

various commonly used manifold types in C++ and Python,
including Eigen vector types in C++, NumPy array in Python,
and Lie groups SO(2), SE(2), SO(3), SE(3) and Sim(3)
(implementations provided by Sophus library [13]), which
are commonly used in SLAM and robotics problems.

We can also customize manifold properties of any C++ or
Python class for miniSAM. In Python this is done by defin-
ing manifold-related member functions, including dim()

function returns manifold dimensionality, and local() and
retract() functions defines the local coordinate chart.
An example of defining a vector space manifold R2 in
Python is in Snippet 3. In C++ we use a non-intrusive
technique called traits, which is a specialization of template
minisam::traits<> for the type we are adding manifold
properties. Using traits to define manifold properties has two
advantages: (1) optimizing a class without modifying it, or
even without knowing details of implementation (e.g. adding
miniSAM optimization support for third-party C/C++ types),
(2) making optimizing primitive type (like float/double)
possible.

IV. EXPERIMENTS

To test the performance of miniSAM, we run a benchmark
on multiple problems of different types and scales, and

TABLE II: Optimization times in second of different frame-
works with different sparse linear solvers, grouped by single-
thread or multi-thread.

2D-PG 3D-PG BA
Ceres + Eigen LDLT 0.090 2.735 54.96
g2o + Eigen LDLT 0.059 2.697 63.66
GTSAM + Multifrontal Cholesky 0.228 2.002 83.67
GTSAM + Sequential Cholesky 0.207 2.836 83.85
miniSAM + Eigen LDLT 0.088 3.341 64.38
Ceres + CHOLMOD 0.080 0.941 28.17
g2o + CHOLMOD 0.064 0.821 35.68
miniSAM + CHOLMOD 0.090 1.107 39.24
miniSAM + cuSOLVER Cholesky 0.458 1.791 49.77

compare with multiple existing frameworks. We choose three
SLAM and SfM problem for benchmarking, from small to
large.
• 2D pose graph problem M3500 [10], which contains

3500 2D poses and 5453 energy edges.
• 3D pose graph problem Torus [10], which contains

5000 3D poses and 9048 energy edges.
• Bundle adjustment problem Dubrovnik [9], which con-

tains 356 camera poses, 226730 landmarks and 1255268
image measurements.

For all problems we use Levenberg-Marquardt algorithm to
solve, and fix the number of iterations to 5.

We run the benchmark with the following frameworks and
sparse linear solvers
• Ceres [6] with Eigen simplicial LDLT solver, and

CHOLMOD [14] Cholesky solver.
• g2o [7] with Eigen simplicial LDLT solver, and

CHOLMOD Cholesky solver.
• GTSAM [8] with built-in multi-frontal and sequential

graph elimination solvers.
• miniSAM with Eigen simplicial LDLT solver,

CHOLMOD Cholesky solver, and CUDA cuSOLVER
GPGPU Cholesky solver.

For miniSAM, all factors and manifolds are implemented
natively in C++. All frameworks in benchmarking are com-
piled in single-thread, except CHOLMOD and CUDA cu-
SOLVER solvers are compiled in multi-thread (using all 12
available CPU threads during benchmarking, and GPU is
used with CUDA). The benchmarking is performed on a
computer with Intel Core i7-6850K CPU, 128 GB memory,
and a NVIDIA TITAN X GPU with 12GB graphic memory.
The results are shown in Table. II, and are grouped by single-
thread or multi-thread.

We can see in Table. II that when the same sparse linear
solver is used, miniSAM has slightly worse runtime compare
to Ceres and g2o, but (except for 3D pose graph case)
has better runtime compared to GTSAM, which does not
use third-party sparse linear solvers. The extra overhead of
miniSAM compare to Ceres and g2o are mainly due to two
major miniSAM design choices:
• miniSAM avoids using any compile-time array or ma-

trix, and all internal vectors and matrices are dynam-

ically allocated. The use of dynamic size arrays in-
volves extra memory allocation overhead and forbids
any compile-time optimization by modern CPU SIMD
instructions.

• miniSAM avoids using any raw pointer and manual
memory management.

The reason to make above design choices is that to make
miniSAM have a Python API consistent with C++ API, and
to make Python interface possible to implement, since Python
does not have machinery to support template programming
or explicit memory management.

We also found CUDA cuSOLVER is not as fast as
CHOLMOD CPU solver when using all 12 available CPU
threads, and it is particularly slow on small problems.
Finally, CUDA cuSOLVER has an one-time launch delay
of about 350ms, once per executable launch. Given such
circumstances using CUDA cuSOLVER is currently only
good for large problems.

V. CONCLUSION

We gave a brief introduction to miniSAM, our non-linear
least squares optimization library. We demonstrate the basic
usage of miniSAM, show its flexibility in fast prototyping
in Python, and its performance in benchmarking of multiple
types of problems in SLAM and robotics applications. We
recognize miniSAM has a relatively small performance loss
compared to other state-of-the-art frameworks, mostly due
to miniSAM’s design to adapt Python API, so currently
miniSAM is not great for performance-critical applications.
But hopefully we can solve the problem in the future
by porting better sparse linear solvers (like GPU-enabled
iterative solver) to mitigate this issue.

REFERENCES

[1] F. Dellaert and M. Kaess, “Square Root SAM: Simultaneous localiza-
tion and mapping via square root information smoothing,” Intl. J. of
Robotics Research, vol. 25, pp. 1181–1203, Dec 2006.

[2] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon, “Bundle
adjustment – a modern synthesis,” in Vision Algorithms: Theory and
Practice (W. Triggs, A. Zisserman, and R. Szeliski, eds.), vol. 1883
of LNCS, pp. 298–372, Springer Verlag, 2000.

[3] J. Dong, M. Mukadam, F. Dellaert, and B. Boots, “Motion planning
as probabilistic inference using Gaussian processes and factor graphs,”
in Robotics: Science and Systems (RSS), 2016.

[4] D.-N. Ta, M. Kobilarov, and F. Dellaert, “A factor graph approach to
estimation and model predictive control on unmanned aerial vehicles,”
in 2014 International Conference on Unmanned Aircraft Systems
(ICUAS), pp. 181–188, 2014.

[5] M. Mukadam, C.-A. Cheng, X. Yan, and B. Boots, “Approximately
optimal continuous-time motion planning and control via probabilistic
inference,” in IEEE Intl. Conf. on Robotics and Automation (ICRA),
pp. 664–671, 2017.

[6] S. Agarwal, K. Mierle, and Others, “Ceres solver.” http://ceres-
solver.org.

[7] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g2o: A general framework for graph optimization,” in Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), (Shanghai,
China), May 2011.

[8] F. Dellaert, “Factor graphs and GTSAM: A hands-on introduction,”
Tech. Rep. GT-RIM-CP&R-2012-002, Georgia Institute of Technol-
ogy, 2012.

[9] S. Agarwal, N. Snavely, S. M. Seitz, and R. Szeliski, “Bundle
adjustment in the large,” in European Conf. on Computer Vision
(ECCV), 2010.

[10] L. Carlone, R. Tron, K. Daniilidis, and F. Dellaert, “Initialization
techniques for 3D SLAM: a survey on rotation estimation and its
use in pose graph optimization,” in IEEE Intl. Conf. on Robotics and
Automation (ICRA), pp. 4597–4604, 2015.

[11] W. Jakob, J. Rhinelander, and D. Moldovan, “pybind11 –
seamless operability between C++11 and python,” 2017.
https://github.com/pybind/pybind11.

[12] G. Guennebaud, B. Jacob, et al., “Eigen v3.” http://eigen.tuxfamily.org,
2010.

[13] H. Strasdat, “Sophus: C++ implementation of lie groups using eigen.”
https://github.com/strasdat/Sophus.

[14] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam, “Al-
gorithm 887: CHOLMOD, supernodal sparse cholesky factorization
and update/downdate,” ACM Transactions on Mathematical Software
(TOMS), vol. 35, no. 3, p. 22, 2008.

APPENDIX: PYTHON EXAMPLE CODE SNIPPETS

Snippet 1. A pose graph optimization in Python
import numpy as np
from minisam import *
from minisam.sophus import *

build factor graph for least square problem
graph = FactorGraph()
loss = DiagonalLoss.Sigmas(np.array([1.0, 1.0, 0.1])) # loss function of sensor measurement model
graph.add(PriorFactor(key(’x’, 1), SE2(SO2(0), np.array([0, 0])), loss)) # prior as first pose
graph.add(BetweenFactor(key(’x’, 1), key(’x’, 2), SE2(SO2(0), np.array([5, 0])), loss)) # odometry measurements
graph.add(BetweenFactor(key(’x’, 2), key(’x’, 3), SE2(SO2(-3.14/2), np.array([5, 0])), loss))
graph.add(BetweenFactor(key(’x’, 3), key(’x’, 4), SE2(SO2(-3.14/2), np.array([5, 0])), loss))
graph.add(BetweenFactor(key(’x’, 4), key(’x’, 5), SE2(SO2(-3.14/2), np.array([5, 0])), loss))
graph.add(BetweenFactor(key(’x’, 5), key(’x’, 2), SE2(SO2(-3.14/2), np.array([5, 0])), loss)) # loop closure

variables initial guess, with random added-on noise
init_values = Variables()
init_values.add(key(’x’, 1), SE2(SO2(0.2), np.array([0.2, -0.3])))
init_values.add(key(’x’, 2), SE2(SO2(-0.1), np.array([5.1, 0.3])))
init_values.add(key(’x’, 3), SE2(SO2(-3.14/2 - 0.2), np.array([9.9, -0.1])))
init_values.add(key(’x’, 4), SE2(SO2(-3.14 + 0.1), np.array([10.2, -5.0])))
init_values.add(key(’x’, 5), SE2(SO2(3.14/2 - 0.1), np.array([5.1, -5.1])))

solve least square optimization by Levenberg-Marquardt algorithm
opt = LevenbergMarquardtOptimizer()
result_values = Variables() # results
status = opt.optimize(graph, init_values, result_values)
if status != NonlinearOptimizationStatus.SUCCESS:

print("optimization error :", status)

Snippet 2. A minimal Python prior factor example on SE(2)
import numpy as np
from minisam import *

python implementation of prior factor on SE2
class PyPriorFactorSE2(Factor): # or inherit from NumericalFactor

constructor
def __init__(self, key, prior, loss):

Factor.__init__(self, 3, [key], loss)
self.prior_ = prior

make a deep copy
def copy(self):

return PyPriorFactorSE2(self.keys()[0], self.prior_, self.lossFunction())
error vector
def error(self, variables):

curr_pose = variables.at(self.keys()[0]) # current variable
return (self.prior_.inverse() * curr_pose).log()

jacobians, not needed if inherit from NumericalFactor
def jacobians(self, variables):

return [np.eye(3)]

Snippet 3. A minimal Python 2D point optimizable manifold
import numpy as np

A 2D point class (x, y)
class PyPoint2D(object):

constructor
def __init__(self, x, y):

self.x = float(x)
self.y = float(y)

local coordinate dimension
def dim(self):

return 2
map manifold point other to local coordinate
def local(self, other):

return np.array([other.x - self.x, other.y - self.y], dtype=np.float)
apply changes in local coordinate to manifold, \oplus operator
def retract(self, vec):

return PyPoint2D(self.x + vec[0], self. + vec[1])

