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Abstract— Autonomous valet parking (AVP) is one of the
most important research topics of autonomous driving in low-
speed scenes, with accurate mapping and localization being its
key technologies. The traditional visual-based method, due to
the change of illumination and appearance of the scene, easily
causes localization failure in long-term applications. In order
to solve this problem, we introduce visual fiducial markers
as artificial landmarks for robust mapping and localization
in parking lots. Firstly, the absolute scale information is
acquired from fiducial markers, and a robust and accurate
monocular mapping method is proposed by fusing wheel
odometry. Secondly, on the basis of the map of fiducial markers
that are sparsely placed in the parking lot, we propose a
robust and efficient filtering-based localization method, which
realizes accurate real-time localization of vehicles in parking
lot. Compared with the traditional visual localization methods,
we adopt artificial landmarks, which have strong stability and
robustness to illumination and viewpoint changes. Meanwhile,
because the fiducial markers can be selectively placed on the
columns and walls of the parking lot, it is not easy to be
occluded compared to the ground information, ensuring the
reliability of the system. We have verified the effectiveness
of our methods in real scenes. The experiment results show
that the average localization error is about 0.3 m in a typical
autonomous parking operation at a speed of 10km/h.

I. INTRODUCTION

Autonomous valet parking is one of the most important
research topics of autonomous driving in low-speed scenes.
With the increasing density of vehicles in the city, parking
space is tight and accidents are frequent during parking op-
erations [1]. Autonomous valet parking technology can help
realize high density parking, make full use of limited parking
space, reduce accidents caused by human errors during
parking, and also bring great convenience to drivers. After
the vehicle is switched to AVP mode, it will automatically
enter the parking lot to look for free parking spaces and park
into any parking space available. However, the technology is
quite far from mature yet and there are still many problems to
be solved. One of the key problems is the lack of robust and
accurate localization information in the absence of GNSS
signals [2]. The schemes of traditional indoor localization
technology , such as localization based on UWB, fixed laser
scanners and other sensors [3], require a large number of
high-cost modifications to the environment. Among SLAM-
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Fig. 1: The smaller figure in the bottom left corner shows
a common scene in underground parking lot with complex
illumination condition. Fiducial markers are applied to pillars
and walls in this scene. As the bigger figure shows, our
system realizes robust and accurate real-time localization
in parking lot by fusing marker detections(as visualized in
smaller figure) and odometry, with the help of a previously-
built map of markers.

based self-localization methods, visual methods are preferred
for its low cost compared to laser methods.

Visual SLAM can accurately estimate the current camera
pose and establish the corresponding environmental map.
ORB-SLAM2 [4], [5] and other feature-based methods have
good results in the scene with rich texture. However, these
methods suffer from environment appearances changes and
complex illumination conditions. Thus, these methods could
only provide visual maps that need to be established within a
short period of time of localization usage, lacking long-term
stability and practicability.

Fiducial marker [6] is a commonly used landmark, which
is often used to estimate the pose of robots [7]. Compared
with traditional geometric features, the fiducial marker has
strong adaptability to illumination changes [8] and has larger
identifiable angle range. In this paper, we propose a mapping
and localization system based on fiducial markers, and utilize
fiducial markers that are sparsely placed in real scenes
and low-cost processors to realize accurate mapping and
localization. Because the fiducial markers can be selectively
placed on the columns and walls of the parking lot, it is not
easy to be obscured compared to the ground information,
which can ensure the reliability of the system. Also, due to
the adoption of visual markers, this system only needs a low-
performance ARM processor to realize robust localization,



which lays a foundation for the practicality of the system.
The method proposed in this paper can establish a long-term
stable and reusable parking lot map and provide accurate
localization information for vehicles. We test the system on
actual vehicles to verify the effectiveness and accuracy of
our method. The experimental results show that the average
localization error of our proposed methods is about 0.3m
in the low-speed parking process with a vehicle speed of
10km/h. In summary, our main contributions are:
• Propose a robust and accurate marker-based mapping

method by fusing scale information extracted from
fiducial markers with odometry and feature points;

• Based on sparse fiducial marker map, propose a robust
localization method with low computational resource
consumption, by fusing marker detection and wheel
odometry with a particle filter;

• Experiments in real scenes are carried out to verify the
validity of our methods.

The rest of the paper is organized as follows. Section II
describes the related works. Section III details the proposed
mapping and localization methods. We validate our method
in Section IV. Finally, Section V concludes the paper.

II. RELATED WORKS

In the past ten years, there have been many visual mapping
and localization works in the field of AVP. According to
the different emphases of these methods, we classify them
into mapping and localization methods. Due to parking lots
usually being private area, there are generally no maps
established in advance, and vehicles need to establish their
own maps. Visual SLAM-based mapping method is one of
the commonly used methods. The V-Charge project [9] uses
SFM framework to build a three-dimensional map of the
environment through images collected by the multi-camera
system configured by the vehicle. Chirca et al. [10] created
a three-dimensional map of the environment through EKF-
based visual SLAM. However, the above methods all utilize
traditional geometric features, such as sparse points and
straight lines in the environment. These traditional feature-
based methods will be affected by changes in illumination,
viewpoint and appearance when used in long term. In order
to overcome these influences, high-dimensional environmen-
tal features are used for mapping. Huang et al [11] extract
the ID information of the parking space through the fisheye
camera, and established the semantic map of the parking
lot environment by combining the monocular camera, wheel
odometry and IMU. However, the parking space information
in the parking lot is easily blocked by vehicles. Huang et al.
additionally introduced visual tags to assist in localization.
Similarly, Zong et al. [12] also introduce visual tags, combine
with vehicle kinematics model, to improve the performance
of ORB-SLAM in underground parking lots. In addition,
road-based semantic features [13], [14], such as lane lines,
speed bumps, turn signs and other features, are also applied
to the mapping system. However, most of these ground
semantic features may suffer from occlusion or be worn out
in usage, which can lead to system failure. The computational

consumption is also relatively high compared with traditional
methods.

The vision-based localization methods [15]–[17] use the
established map to obtain the pose of the camera relative
to the map through descriptor matching. However, they are
subject to localization failures in indoor parking lots and
other low illumination environments [18]. Jeevan et al. [19]
proposed a localization method, which fuse fiducial markers
placed on the ground and wheel odometry. Compared with
the feature-based method, it is more robust, but the map is
generated by georeferencing each marker with GPS, thus the
mapping can only be applied to outdoor scenes. For indoor
parking lots, Qin et al. [20] utilize a variety of road semantic
features and combined with wheel odometry to achieve
centimeter-level parking accuracy. However, this method puts
forward higher requirements for onboard hardware (high-
performance processors, high-resolution cameras, etc.)

III. APPROACH

In this paper, we use monocular camera to get the image
information. The monocular camera is installed to the center
of the vehicle, behind the windshield to capture front-view
scenes. Vehicle odometry information formed by steering
wheel angle and vehicle speed is also used in our system. In-
trinsic and extrinsic parameters of all sensors were calibrated
offline in advance.

The framework consists of two parts, as shown in Fig.2.
The first part is mapping, in which we use the front-view
monocular camera to detect fiducial markers, extract scale
and pose information and then fuse with odometry data
to build a global fiducial marker map. This marker map
is saved for localization. Then the vehicle is localized by
matching fiducial markers extracted from monocular image
to the marker map. In the end, a particle filter fuses visual
localization results with odometry, which guarantees the
system survives in the marker-less region and has a smooth
output.

A. Mapping with Fiducial Markers and Vehicle Odometry

The proposed mapping method contains three main mod-
ules: tracking, local mapping and loop closing [21]. In the
initialization part of the tracking module, we use fiducial
markers to recover the scale of monocular camera. In the
local mapping module, the map is extended by adding newly
observed markers and new map points. In addition, the
poses of local keyframes and local map points are optimized
jointly in this module, called local bundle adjustment(BA).
Accumulated drift will be eliminated by loop closing.

1) Scale Recovery From Visual Fiducial Markers: There
are many different kinds of visual fiducial markers. We
choose ArUco marker in our system due to its robustness
and high-efficiency and it is included in OpenCV [22].

Adding the ArUco marker to monocular SLAM [23], [24]
solves the problem of scale ambiguity. At initialization, we
can recover the scale factor s of the monocular camera
trajectory by obtaining the same ArUco Marker observed
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Fig. 2: Block diagram illustrating the full pipeline of the proposed system. In the mapping procedure, it builds a map of the
large-scale indoor parking lot with fiducial markers. Based on this prior map, the localization procedure can provide precise
6-DoF pose through a particle filter fusing fiducial markers with odometry.

by both keyframes as follows.

Rk+1
WC Rk+1

CMi
tk+1
MiC −Rk

WCRk
CMi

tk
MiC = s(tk+1

WC − tk
WC) (1)

where [Rk
CMi

tk
CMi
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frame k.
2) Pose Optimization with Vehicle Odometry Constraints:

Most cars are equipped with wheel encoders [25]. In most
cases, wheel encoders provide a reliable measurement of
the distance traveled by the wheel. In our case, we can
directly read the wheel speed v of the rear wheels and the
corresponding steering wheel angle δ through the vehicle’s
CAN bus. Then we can get the pose Rk+1

WV and tk+1
WV of the

vehicle for frame k+1 according to the vehicle odometry as
Equation 2. xk+1 = xk +∆xcos(θk)−∆ysin(θk)

yk+1 = yk +∆xsin(θk)+∆ycos(θk)
θk+1 = θk +∆θ

(2)

Therefore, in local map optimization, we additionally
introduce vehicle odometry error term on top of the repro-
jection error term by Equation 3

γ = {R j
CW , t j

CW}
γ∗ = argmin(∑k Epro j (k, j)+Evehicle(i, j))

(3)

where Epro j is the reprojection error of current frame j for
given match k . And the vehicle odometry error term Evehicle
between keyframe i and j is denoted by Equation 4.
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ReT

t ]∑I [eT
ReT

t ]
T
)

eR = Log((Exp(wv∆t(i, j))T Ri
VW R j
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ep = Ri
VW (t j

WV − t i
WV )− vi

WV ∆t
(4)

where ρ(·) is the robust Huber cost function, ∑I is the
information matrix of vehicle odometry error term.

B. Marker Map-based Real-time Localization
To better suit the need of performing real-time localization

on automotive-grade embedded processors, we propose a
particle filter-based method to fuse visual and odometry
information for localization in indoor parking zone. The
marker map we use is created in previous part.
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Fig. 3: Localization Algorithm Structure

1) Initialization: Our system requires at least one marker
detection to initialize. After localization system is started,
markers in surrounding area are detected by vision and
their IDs and relative poses to vehicle are used for ini-
tialization. With known ID, a marker’s absolute pose can
be acquired from marker map created earlier by matching
its ID to the marker with same ID in the map. Then the
vehicle’s initial pose in map coordinate can be calculated
from marker’s absolute pose and marker’s relative pose to
vehicle. Being vehicle pose in 2D space (x,y,θ), for kth
marker detected during initialization with a relative pose to
vehicle as (x′,y′,θ ′), its absolute pose in map coordinate
being mk = [xk yk θk]

T , then x0
y0
θ0

=

 xk− x′cosθ ′+ y′sinθ ′

yk− x′sinθ ′+ y′cosθ ′

θk−θ ′

 (5)

where X0 = [x0 y0 θ0]
T is vehicle’s initial pose under map

coordinate.



To improve initialization accuracy, we do this calculation
multiple times and use the results’ average as vehicle initial
pose, and then generate our set of particles with different
poses (xn,yn,θn) around this pose according to normal
distribution, where (stdx,stdy,stdθ ) are preset initialization
parameters.

2) Motion Update: By using wheel odometry we can
obtain vehicle’s relative movements sequentially and use
them to perform a prediction update to our particles. Be-
cause in our system the frequency of marker observations is
significantly lower than that of odometry feedbacks, so the
motion and observation could be considered separately while
updating state probability.

If at moment t-1 the nth particle’s pose state is Xn
t−1 =

[xn
t−1 yn

t−1 θ n
t−1]

T , then after a motion update its state is xn
t

yn
t

θ n
t

=

 N
(
0,x2

σ

)
N
(
0,y2

σ

)
N
(
0,θ 2

σ

)
+ xn

t−1 + cos
(
θ n

t−1 +∆θ
)

∆x− sin
(
θ n

t−1 +∆θ
)

∆y
yn

t−1 + sin
(
θ n

t−1 +∆θ
)

∆x
θ n

t−1 +∆θ
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where ut = [∆x ∆y ∆θ ]T are translation and rotation incre-
ments measured by wheel odometry, and (xσ ,yσ ,θσ ) are pre-
set motion noises. Motion noises is estimated by experiments
and in our case set to (0.005m,0.005m,0.001rad).

3) Observation Update: While doing motion updates the
marker detector is detecting markers in monocular images at
the same time. Due to the pose ambiguity problem, marker
detection’s accuracy is slightly lower on longer distance, so
we only take detections within a distance threshold(10m).
Once one or more such detections are returned, observation
update is carried out using these detections.

To evaluate the error of each particle’s pose to vehicle’s
actual pose, based on relative pose of marker to vehicle
measured by marker detector and each particle’s pose state,
we calculate the marker poses observed from each particle
and compare them to this marker’s actual pose in the map.
If the relative pose of a marker to vehicle is measured as
Zt = [xob yob θob]

T , then the nth particle in particle set, with
a pose state of Xn = [xn yn θn]

T , the marker pose observed
from this particle under map coordinate is: xob−map

yob−map
θob−map

=

 xob cosθn− yob sinθn + xn
xob sinθn + yob cosθn + yn

θob +θn

 (7)

The particle’s weight can be calculated using error be-
tween this pose and the marker’s real pose, thus the weight
wn of nth particle is:

wn =
e−
((
(xob−map−xob)

2
/σ2

x

)
+
(
(yob−map−yob)

2
/σ2

y

))
/2

2πσxσy
(8)

where σx and σy are observation noises, set to 0.3m and 0.3m
in our case respectively. They are set slightly bigger than
translational errors of marker detections intendedly. Consid-
ered that markers in parking garage is relatively sparse, this

can help the system correct odometry accumulation errors
more gradually and avoid local sharp changes in pose output,
which may have negative effects on motion control and path
planning. Then we complete weights update by normalize
weights of the whole particle set:

wnorm =
w1:n

∑
n=num
n=1 wn

(9)

Where num is particles’ number and wnorm is the array of
normalized particle weights.

4) Resampling: With particle weights updated, we firstly
check vehicle’s moving state through latest odometry read-
out. If odometry shows that vehicle is stationary, we keep the
particle weights update without resampling because vehicle’s
pose is not supposed to change at this moment. If the vehicle
is moving, we resample the particles by their weights and
reinitialize weights of the new particle set as:

w1:num =
1

num
(10)

The Xt probability distribution is approximated by the new
particle set.

Finally, we output vehicle pose every time system state
is updated. To smooth estimated trajectory and reduce
pose jumps, we choose average pose of all particles
(xavg,yavg,θavg) as the final pose output.

IV. EXPERIMENTS AND ANALYSIS

In order to verify the validity of the system proposed in
this paper, we conducted separate experiments for mapping
and real-time localization. The experiment environment is an
underground parking garage with uneven lighting and an area
of about 500 m2. Twenty markers of 0.552m*0.552m size are
placed on the walls and pillars of parking lots where they
are easy to be observed and not easily to be obscured by the
vehicles in the parking lot. The average interval between the
markers is about 8m, excluding the case where there are mul-
tiple markers on different sides of the same pillar. The vehicle
is equipped with two wheel encoders, an Intel RealSense
D435i camera , VLP16 LiDAR and an embedded platform
with Ubuntu 16.04. The vehicle travels at a constant speed of
10km/h. The video link for a demonstration of the proposed
system is: https://youtu.be/11r3eRAjFVA

A. Mapping Metric Evaluation

For mapping metric evaluation, considering the high ac-
curacy and robustness and maturity of the 3D laser SLAM
algorithm in indoor scenarios, we collect laser point cloud
data during the experiment. We use the Lego-Loam [26]
algorithm to process the acquired data and treat the resulting
laser trajectory as ground truth. The total trajectory length
is 143 m. We recorded the camera trajectory as well as
the laser trajectory. Due to the uniqueness of our sensor
configuration, it is hard to directly compare against other
existing algorithms. We compared our method with ground
truth in terms of mapping accuracy.

The mapping result and estimated trajectories are shown in
Fig. 4. The RMSE of absolute trajectory error is 0.438m and
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Fig. 4: (top) Map of the parking lot. The red squares are
visual fiducial markers. (bottom) Estimated trajectories by
our methods and the ground truth.

the normalized estimation error squared(NESS) is 0.306%.
It can be seen that our algorithm performs well by fusing
feature points, visual fiducial markers and vehicle odometry.

B. Localization Accuracy Evaluation

After the marker map is created, we performed real-
time localization experiments in underground parking garage
mentioned above, as shown in Fig. 1, where the blue line
is estimated trajectory, the bigger axes show the absolute
poses of markers in the map and smaller axes show the
poses of markers observed from different particles. We also

TABLE I: Errors in two experiments

Error Mean[m] Max[m] Min[m] RMSE[m]
Experiment 1 0.301 0.775 0.0153 0.347
Experiment 2 0.264 0.687 0.0248 0.307

use trajectories estimated by laser SLAM as ground truth to
evaluate accuracy of our localization method. The results of
two independent experiments are shown in Fig. 5, Fig. 6 and
TABLE I.

As shown above, our method is low on most of the
errors, with an average error around 0.3m. The localization
performance is also stable throughout the whole trajectory.
Due to the fact that marker landmarks are sparsely distributed

in the parking garage(as stated above, the average distance
between markers is 8m), localization error at some places
with few or no markers detectable will be slightly bigger,
especially during turns(as shown at the upper right and
bottom left corners of trajectories in Fig. 5), but these errors
are still acceptable and could be corrected quickly as the
trajectories show.
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Fig. 5: Comparison of marker-based localization and ground
truth(grey line)
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TABLE II: Running performance of our method on
different hardware

CPU occupation Memory used[MB] Frequency[Hz]
i7 laptop 14% 500 100

A53 embedded 25% 510 100

C. Computational Resource Demand

As mentioned above, our localization method is developed
for online usage on intelligent vehicle’s onboard embedded
processor, so the algorithm’s computational resource demand
needs to be as low as possible. We tested our algorithm on
8-core i7-7700HQ equipped laptop and 4-core A53 equipped
embedded platform respectively. As shown in TABLE II,
while performing localization successfully, the computational
resource consumption of our method is also suitable for real-
time application on intelligent vehicles.



D. System Robustness

To verify our method’s environment robustness over fea-
ture point-based methods, we tested these methods in long-
term localization. Experiments showed that after signifi-
cant changes occurred in operation environment, appearance
changes in certain locations will lead to false feature point
matches to map(as shown in Fig. 7), causing localization
failures. On contrary, because marker detections are not af-
fected by appearance changes of surrounding area(as shown
in Fig. 8), localization based on marker map is still robust
and effective.

Fig. 7: The false feature point matches of the same place at
different time due to appearance changes

Fig. 8: Marker detections are not affected by changes in
surrounding area

V. CONCLUSIONS
In order to realize the robust localization for autonomous

parking in underground parking lots, we introduce visual
fiducial marker as a stable artificial landmark to establish a
robust and long-term usable map. On this basis, an efficient
localization algorithm based on particle filter is proposed
to perform robust and accurate localization. However, The
method we proposed still requires manually placing markers
in the parking lot. In the future, we plan to replace fiducial
markers with the existing text landmarks in the parking lot
to further improve the practicability of our system.
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[6] F. J. Romero-Ramirez, R. Muñoz-Salinas, and R. Medina-Carnicer,
“Speeded up detection of squared fiducial markers,” Image and Vision
Computing, pp. 38–47, 2018.

[7] H. Lim and Y. S. Lee, “Real-time single camera slam using fiducial
markers,” in 2009 ICCAS-SICE, pp. 177–182, IEEE, 2009.

[8] D. Hu, D. Detone, and T. Malisiewicz, “Deep charuco: Dark charuco
marker pose estimation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 8436–8444, 2019.

[9] U. Schwesinger, M. Burki, J. Timpner, S. Rottmann, L. Wolf, L. M.
Paz, H. Grimmett, I. Posner, P. Newman, C. Hane, L. Heng, G. H. Lee,
T. Sattler, M. Pollefeys, M. Allodi, F. Valenti, K. Mimura, B. Goebels-
mann, W. Derendarz, P. Muhlfellner, S. Wonneberger, R. Waldmann,
S. Grysczyk, C. Last, S. Bruning, S. Horstmann, M. Bartholomaus,
C. Brummer, M. Stellmacher, F. Pucks, M. Nicklas, and R. Siegwart,
“Automated valet parking and charging for e-mobility,” in Proceedings
of IEEE Intelligent Vehicles Symposium, pp. 157–164, 2016.

[10] M. Chirca, R. Chapuis, and R. Lenain, “Autonomous Valet Parking
System Architecture,” in Proceedings of IEEE Conference on Intelli-
gent Transportation Systems, ITSC, pp. 2619–2624, 2015.

[11] Y. Huang, J. Zhao, X. He, S. Zhang, and T. Feng, “Vision-based
Semantic Mapping and Localization for Autonomous Indoor Parking,”
in IEEE Intelligent Vehicles Symposium, Proceedings, pp. 636–641,
2018.

[12] W. Zong, L. Chen, C. Zhang, Z. Wang, and Q. Cheny, “Vehicle model
based visual-tag monocular ORB-SLAM,” in 2017 IEEE International
Conference on Systems, Man, and Cybernetics, SMC 2017, pp. 1441–
1446, 2017.

[13] A. Ranganathan, D. Ilstrup, and T. Wu, “Light-weight localization for
vehicles using road markings,” in IEEE International Conference on
Intelligent Robots and Systems, pp. 921–927, 2013.

[14] Y. Lu, J. Huang, Y. T. Chen, and B. Heisele, “Monocular localization
in urban environments using road markings,” in Proceedings of IEEE
Intelligent Vehicles Symposium, pp. 468–474, 2017.
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