
SDVTracker: Real-Time Multi-Sensor Association and Tracking for
Self-Driving Vehicles

Shivam Gautam1, Gregory P. Meyer1, Carlos Vallespi-Gonzalez1 and Brian C. Becker1

Abstract— Accurate motion state estimation of Vulnerable
Road Users (VRUs), is a critical requirement for autonomous
vehicles that navigate in urban environments. Due to their
computational efficiency, many traditional autonomy systems
perform multi-object tracking using Kalman Filters which
frequently rely on hand-engineered association. However, such
methods fail to generalize to crowded scenes and multi-sensor
modalities, often resulting in poor state estimates which cas-
cade to inaccurate predictions. We present a practical and
lightweight tracking system, SDVTracker, that uses a deep
learned model for association and state estimation in conjunc-
tion with an Interacting Multiple Model (IMM) filter. The
proposed tracking method is fast, robust and generalizes across
multiple sensor modalities and different VRU classes. In this
paper, we detail a model that jointly optimizes both association
and state estimation with a novel loss, an algorithm for de-
termining ground-truth supervision, and a training procedure.
We show this system significantly outperforms hand-engineered
methods on a real-world urban driving dataset while running
in less than 2.5 ms on CPU for a scene with 100 actors, making
it suitable for self-driving applications where low latency and
high accuracy is critical.

I. INTRODUCTION

Self-Driving Vehicles (SDVs) depend on a robust auton-
omy system to perceive actors and anticipate future actions
in order to accurately navigate the world. Interacting well
with Vulnerable Road Users (VRUs) [1] such as pedestrians
and bicyclists requires good motion estimates. A classical
autonomy system that uses structured prediction for ac-
tor trajectory prediction [2], [3], [4] needs not only high
detection rates to identify objects in the scene, but also
robust tracking performance to estimate the motion state.
Probabilistic tracking using filters can be a reliable method
to estimate the motion state [5]. These methods attempt to
refine the motion estimates of previously tracked objects by
associating them with a given set of detections in the scene
at the current timestamp.

Failures in association cause inaccurate state estimates,
often leading to cascading errors in future associations, state
estimations, and trajectory predictions resulting in improper
autonomy behavior [6]. In simple scenes, engineered solu-
tions do well. However, associating VRUs in crowded, urban
environments is challenging due to occlusions, crowd den-
sity, varying motions and intermittent detector false positives
or false negatives. Any errors in association break the strict

This work is part of the work done at Uber Advanced Technologies
Group.

1 All authors work with the Perception team at Uber ATG. {sgautam,
gmeyer, cvallespi, bbecker}@uber.com

Fig. 1. Association and tracking of pedestrians is challenging in dense,
urban environments. We propose a real-time learned association and tracking
system with IMM filtering that incorporates LiDAR + camera modalities and
show improvements on the task of both association and state estimation.

assumption for probabilistic filtering regarding observations
belonging to the same actor, leading to egregious errors.
Incorporating detectors for additional sensor modalities, such
as LiDAR and camera detectors, improves overall recall, but
increases the likelihood of mis-association, especially as each
sensor has different failure modes and noise characteristics.
Learned approaches offer improved performance, but are
often restricted to the 2D image plane [7], require a fixed
number of objects [8], need expensive feature extraction on
specialized GPU hardware [9], or can run only offline [10],
making them unsuitable to self-driving applications.

To address these limitations, we propose SDVTracker,
a learned association and tracking system for improving
motion estimation of VRUs in challenging, self-driving do-
mains. Fig. 1 demonstrates our approach performing well
in dense crowds across many classes of VRUs including
pedestrians, bicyclists, and skateboarders. As the number of
VRUs in the scene increases, we show that this method scales
better than classical approaches. Our approach generalizes
to multi-sensor tracking, improving recall and tracking when
both LiDAR and camera detections are used as asynchronous
input. In addition to learning association, we propose a novel
method to jointly estimate association and state, which leads
to improved performance. Further, we show a method of
incorporating our learned association and state within a track-
ing system that uses an Interacting Multiple Model (IMM)
filter. Finally, SDVTracker offers real-time performance on
commodity CPUs, making it well-suited for compute-limited
platforms.

Fig. 2. Overview of the association and tracking system. SDVTracker scores the candidate pairs with a learned model to estimate the association probability.
After enforcing 1-to-1 correspondence through greedy assignment, we use the learned associations and motion estimates as observations within an IMM
update.

II. RELATED WORK

As more autonomous capabilities are added to vehicles,
it is critical for these intelligent vehicles to understand and
predict the behavior of humans that they interact with to
operate safely. Ohn-Bar and Trivedi [11] provide a thorough
survey into three areas of active research where humans
and automated vehicles interact, including humans inside the
intelligent vehicle, humans around the vehicle, and humans
operating surrounding vehicles. In this work, we focus on
understanding the motion of humans around the SDV.

A. Filter-based Tracking
A conventional algorithm to perform the motion state

estimation from observations is the Kalman Filter (KF)
[12]. This algorithm works in two steps that get applied
recursively: prediction and update. In the prediction step,
the filter produces estimates of the state variables and their
uncertainties. The update step is performed when the new
measurement arrives, in which the filter corrects the state
by combining the new measurement and the filter prediction
weighted by their certainties. This filter, and its variants, are
a common class of filter-based methods [13], and are widely
used due to their ability to produce better state estimates
than those based on a single measurement. However, the
KF is limited to linear functions for the state transition as
well as the observation model. In our case, this reduces
our ability to correctly track objects that can have non-
linear motions, such as accelerations. The Extended Kalman
Filter (EKF) overcomes this constraint by linearizing these
functions, but it is often difficult to tune a single filter for
all the motion modalities we encounter for each object. In
this paper, we use the Interacting Multiple Model (IMM)
[14] algorithm because it overcomes these limitations by
tracking with multiple models concurrently and fusing their
predictions weighted by their confidences. Furthermore, the
IMM has been shown to offer performance similar to the
best motion model.

B. Tracking-by-Detection
Most recent work on Multi-Object Tracking (MOT) utilize

the tracking-by-detection paradigm [10], [15], [16], [17],

[18], [19], [20], [7], [21], [8], [22] where detections are
provided each time-step by a detector, and tracking is per-
formed by linking detections across time. As a result, the
task of object tracking becomes a data association problem.
Most tracking-by-detection methods solve the association
problem in one of two ways, either in an online (step-wise)
fashion [15], [16], [17], [18], [20], [7], [8], [22] or in an
offline (batch-wise) manner [10], [19], [21]. Online methods
associate new detections at each time-step to the existing
tracks, and the association is posed as a bipartite graph
matching problem. On the other hand, offline methods often
consider the entire sequence, and data association is cast
as a network flow problem. Online methods are appropriate
for real-time applications like autonomous driving where
offline approaches are well-suited for offline tasks like video
surveillance. In this work, we leverage a step-wise approach
as we are interested in real-time autonomous navigation
where computation efficiency is as important as accuracy.

C. Classical Association Techniques
To solve the data association problem, incoming detections

at the current timestamp need to be paired to existing
objects from the last timestamp. To avoid matching in the
entire measurement space, every detection that lies within a
certain region, or gating region, of an object is considered
a candidate. A problem arises when multiple candidates fall
within this region. A common way to solve this involves
ranking each object-detection pair and then performing a
bijective mapping. The bijective mapping forces each object
to associate with only one detection. This mapping can
be performed using common matching algorithms such as
greedy best-first matching or the Munkre’s algorithm [23].

A common method for ranking each object-detection is to
score each detection based on the proximity to the predicted
object [24]. Based on this, we consider three functions:

1) Intersection-over-Union (IoU) score: Many trackers use
ranking functions based a measurement of overlap be-
tween predictions and detections [25]. This score is
defined as the ratio between the area of intersection
and the area of union of the detection and predicted
polygons.

2) L2 Distance: As part of the update step, the IMM needs
to compute the residual or innovation, which is the
difference between the predicted detection and the new
detection. The L2 norm of the residual can be used as
a matching score.

3) Mahalanobis Distance: The IMM computes the gain or
blending factor that determines the relative weight of
the new detection in the update step. This gain is used
to scale the residual vector, and the L2 norm of the
resulting vector can be used as a matching score. This
association metric has been previously explored in [26],
where it is used to filter infeasible associations.

D. Learned Association Techniques

More recently Recurrent Neural Networks (RNNs) have
been used for association [8], [20], [7], which motivates our
use of a RNN for association in this work. However, our
proposed method and the previous work utilize RNNs in
different ways. [8] uses a single Long-Short Term Memory
(LSTM) to associate all detections to all tracks. However,
it requires the number of objects to be fixed and known
beforehand, which is not feasible for autonomous driving
in urban environments. [20] uses an LSTM to estimate the
affinity matrix between all detections and tracks one row
at a time. Most similar to our approach is the work of
Sadeghian et al. [7], who use three separate LSTMs to model
the appearance, motion, and interaction of the tracked objects
over time. Each track has its own memory for each of the
LSTMs, and appearance, motion, and interaction features
are extracted for each detection using a set of Convolution
Neural Networks (CNNs). The output of the LSTMs and the
CNNs are fed into a multi-layer neural network to estimate
the likelihood that the detection should be associated to
the track. Unlike [7], our proposed method uses a single
LSTM to model multimodal features of an object over time.
Furthermore, in addition to an association probability, our
approach predicts a score for each possible match in order
to improve association in heavily crowded scenes, and we
estimate the state of the object to improve tracking. Finally,
our method tracks objects in 3D where [7] tracks objects in
the 2D image plane.

E. 3D Object Tracking

The vast majority of the previous work performs object
tracking in the image plane [10], [15], [16], [17], [18],
[19], [20], [7], [21]. However, to autonomously navigate
a vehicle through the world, we need to reason about the
environment in 3D or from a bird’s eye view. Furthermore,
the bird’s eye view is a natural representation for fusing
multiple sensor modalities like LiDAR, camera and RADAR.
Rangesh et al. [22] extends [18] to the bird’s eye view to
track vehicles. In [22], vehicles are detected with an image-
based detector and localized in the bird’s eye view using a flat
ground assumption or with 3D measurements from LiDAR
when available. The life-cycle of tracks is handled through a
Markov Decision Process (MDP) where the policy is learned,
and tracks are associated with detections using a Support

Vector Machine (SVM). In this work, our proposed method is
capable of fusing detections from various sensing modalities
including LiDAR and image-based detectors. Furthermore,
we associate objects across sensors and time using a RNN.

III. PROPOSED METHOD

The overall architecture of the system is depicted in Fig. 2.
We use detections generated at each time step independently
from LiDAR and camera sensors. To generate detections
from LiDAR, we use LaserNet [27], and the detections
from the camera sensors are generated using RetinaNet [28].
Similar to [22] and [29], the image-based detections are then
augmented with a range estimate by projecting the LiDAR
points in the image plane and using the median range value
of the points associated to create 3D bounding boxes.

The proposed method is depicted in Fig. 3. During in-
ference, the model takes an object-detection pair as input,
and produces its association and state. For each object, we
generate a set of potential association candidates with a
corresponding score. The set of potential association candi-
dates is created by predicting an association/mis-association
probability for every pair. If the probability of association
is higher than mis-association, then we add the pair to
our set of potential association candidates. Afterwards, we
perform greedy assignment based on the predicted score to
create unique object-detection associations. We refine the
detections with our predicted state estimate before using
them as observations in the IMM.

After updating the state for objects, we need to prune our
existing hypothesis set of objects that are currently alive in
the scene. Objects that have not been observed for more than
τ time-steps are removed from the scene. For objects that
have not been observed for ≤ τ time-steps, we extrapolate
their position to the next timestamp based on their past
velocity.

In the following sections, we describe in detail feature ex-
traction from detection-object pairs, the network architecture,
the multi-task loss function and the ground-truth association
used during training.

A. Feature Extraction

We extract three different types of features: shape, motion
and difference features. The shape features include polygon
length, width, height and center coordinates. The motion
features include the object’s previous and predicted state.
The difference features, as the name suggests, are obtained
by subtracting two attributes (difference in predicted object
position and the detection position, difference between the
object box dimensions and the detection box dimensions).
We also use the timestamp and detector confidence as input
to the model. While we could use a separate network for
feature extraction or use the features from the internal
activation layers of the detectors, we decided to utilize these
lightweight features in order to keep our method real-time
and sensor-agnostic.

Fig. 3. Proposed architecture of the learned association and state estimation model. We perform feature extraction for each candidate pair and learn
whether the pair is a true association and the posterior state estimate of the object with uncertainties. We learn a probability of association and an association
score to break ties between multiple competing candidates. We show that learning both a probability and a score are beneficial to the task of association,
as well as the learned posterior state estimate improves overall tracking performance.

Fig. 4. Network architecture used for LSTM and MLP networks. (a) For the
LSTM, we use a single LSTM cell with 64 hidden units and a single layer
fully-connected encoder-decoder. The network takes the feature descriptor,
the cell state (Ct−1) and the hidden state (Ht−1) for the object as input to
produce association outputs and new cell (Ct) and hidden states (Ht). (b)
For the MLP, we use six fully connected layers with 64 units each.

B. Learning Joint Association and Tracking

The learned model produces association probabilities,
scores and state estimates. For this work, we implement
a single-cell LSTM as well as a Multi-Layer Perceptron
(MLP). Both network architectures can be seen in Fig. 4
and we compare the performance of each in Section IV-D.

To learn association and tracking jointly, we utilize a
multi-task loss. For the task of association, we propose
learning a unique training target comprised of an associ-
ation probability and score. The association probability is
framed as a binary classification problem in which we try
to categorize candidates as associations or mis-association.
The association probability is used to identify a list of
potential candidates that could potentially be associated.
Furthermore, the score is used to rank associations, when
there are more than one potential candidates for association.
The loss function for the association task is defined as,

`assoc = `prob + wscore · `score, (1)

where `prob is the binary cross entropy used to learn the
association probability, `score a L2 loss on the regressed
score, and wscore is used to weight the two losses.

In addition to learning association, we learn a posterior
state update for the object. The state of the object at time t
is defined as follows:

st = [xt, yt, v
x
t , v

y
t] (2)

σt = [σxt
, σyt

, σvx
t
, σvy

t
] (3)

where (xt, yt) is the position of the object, (vxt , v
y
t) is

the velocity of the object, and (σxt
, σyt

, σvx
t
, σvy

t
) are the

corresponding standard deviations. We learn the state using
the following loss [30]:

`state =
∑
i

((
st,i − s∗t,i

)2
2σ2

t,i

+ log σt,i

)
(4)

where st,i is the i-th element of the state vector at time t,
σt,i is the corresponding standard deviation, and s∗t,i is the
ground-truth state. The total multi-task loss is

`total = `assoc + wstate · `state, (5)

where wstate is used to weight the relative importance of the
two tasks.

C. Training Procedure

For training the network for association and tracking, we
use a dataset with time-consistent IDs for labels. To provide
direct supervision for the association task, we require a
function that maps a candidate object-detection pair to a
binary value indicating a true or false association, along with
a score.

Given a set of detections Dt = {D1
t , D

2
t , . . . , D

N
t } at

time t and a set of objects Ot−1 = {O1
t−1, O

2
t−1, . . . , O

M
t−1}

from time t − 1, the goal of ground-truth association is to
define a mapping f : Ot−1 7→ Dt using the labeled data
Lt−1 and Lt at time t− 1 and t. To handle the case where
the object does not match to any detection, a null detection is
added to Dt. For each object Oi

t−1 ∈ Ot−1, we first identify
the label Lj

t−1 ∈ Lt−1 with the maximum IoU overlap with
the object. Afterwards, we find all detections in Dt with

an IoU ≥ 0.1 with the label Lj
t at time t. All candidate

detections are added to the training set as a true association,
and their score is defined as

yscore = ‖φ(Lj
t−1)− φ(Oi

t−1)‖2 + ‖φ(L
j
t)− φ(Dk

t)‖2 (6)

where Dk
t is a candidate detection and φ(·) computes the

object’s centroid.
During inference the model will encounter mis-

associations as well. Therefore, the model needs to
learn to identify false associations. To accomplish this, we
augment the dataset with examples of mis-associations.
For every true association, Dk

t and Oi
t−1, we identify all

Dn
t ∈ Dt where ‖φ(Oi

t−1)− φ(Dn
t)‖2 < r and do not have

an IoU ≥ 0.1 with Lj
t . We add a random subset of such

examples to our dataset as false associations.
By predicting an association probability and a score,

our method is robust to false positives due to duplicate
detections. The probability allows us to identify all potential
association candidates, including the true detection as well
as false positives. The score then allows us to select the
best candidate and discard the duplicate detections. In our
experiments, we demonstrate the importance of predicting
both.

Another advantage of breaking the problem of association
into learning a probability and a score is that it eliminates
the need for any engineered threshold to identify matches.
Finding such thresholds can be challenging in the context
of using different sources for detections with different er-
ror characteristics, e.g. image-based detections may have a
higher range of uncertainty as compared to LiDAR detec-
tions. Besides, different VRU classes have different motion
characteristics, e.g. bikes can move faster than pedestrians;
therefore, different classes could have different scores. Our
proposed method, considers all candidates with an associa-
tion probability greater than the mis-association probability,
and it identifies the best match with the score. As a result,
we eliminate the need for any engineered thresholds.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We evaluate our method on the ATG4D dataset which
contains 5,000 sequences in the training set, 900 sequences
for the test set and 500 sequences for validation set. Each
sequence is captured at 10Hz intervals. The data is collected
using a Velodyne 64E LiDAR along with a camera sensor,
while driving in an urban setting. For the experiments in the
paper, we generate detections as described in Section III. To
reduce the detection-object pairs that we run inference for,
we prune the list of all possible pairings based on a gating
radius, r. This is common practice within tracking [24] and
makes the problem tractable by not considering impossible
associations.

For our experiments, we set r = 4 m since it accom-
modates both slow moving pedestrians and fast moving
bikes and τ = 5 for our object track life management.
We set wscore = 0.02 and wstate = 0.06 while training

models. Finally, the individual motion models in the IMM
are designed to be adapted to the different motion modalities
we encounter: static, constant velocity, and accelerating.

B. Evaluation Metrics

We evaluate the performance of methods using standard
multi-object tracking metrics [31], [32] to compare tracking
methods. These include evaluating the Multi-Object Track-
ing Accuracy (MOTA), Multi-Object Tracking Precision
(MOTP), Mostly Tracked (MT), Mostly Lost (ML) and ID
Switches (IDSW). However, these metrics fail to capture
the quality of velocity estimates. Measuring the accuracy of
the estimated velocity is imperative to evaluating tracking
performance for trackers that are used by dependent systems
to predict behavior. To resolve this gap in the metrics, we
propose two new metrics: Multi-Object Tracking Velocity
Error (MOTVE) and Multi-Object Tracking Velocity Outliers
(MOTVO).

We define MOTVE as the average velocity error for all
true positive objects. This is computed as

MOTVE =

T∑
t=0

M∑
i=1

||vit − v̂it||2
T∑

t=0
gt

(7)

where v̂it and vit refer to the estimated velocity of i-th
object and its corresponding ground-truth label at time t
respectively. The number of object-label pairs present at time
t are denoted by gt.

We define MOTVO as the fraction of the object-label pairs
where the velocity error is greater than a threshold,

MOTVO =

T∑
t=0

n∑
i=1

1[‖vit − v̂it‖2 > ν]

T∑
t=0

gt

(8)

where 1[·] is an indicator function. For this evaluation, we
set ν to 1 m/s for pedestrians and 1.5 m/s for bicyclists. This
measures the number of egregious velocity errors and gives
an indication about how robust the system is to producing
velocity outliers.

C. Performance Comparison

We compare our learned method for joint association and
tracking to the classical association methods described in
Section II-C, due to their widespread use in filter-based
tracking for real-time systems. We evaluate all methods on
unimodal (LiDAR Only) and multimodal (LiDAR + Camera)
configurations. All methods use the same IMM tracker. The
results are detailed in Table I. Our proposed SDVTracker sig-
nificantly improves system performance over other methods
for both sensor modalities. For the LiDAR only system, we
see improvements such as a 16% reduction in MOTVE, a
6.23% reduction in ID switches and a 2% reduction in false
positives, over the next best method. Mahalanobis association
has the best MOTP by 0.09 cm, but does not translate to

TABLE I
COMPARISON OF TRACKING METHODS ACROSS MULTIPLE SENSOR MODALITIES

Sensing
Modalities

Method MOTA ↑ MOTVO ↓ MOTVE ↓ FP ↓ FN ↓ IDSW ↓ MOTP ↓ MT ↑ ML ↓ Frag ↓
Ped Bike Ped Bike

LiDAR

IoU-based Association 67.6486 3.572 2.377 0.170 0.287 394840 510918 44855 0.3527 0.389 0.164 39385
L2 Association 67.9379 3.204 2.373 0.158 0.281 391298 508561 42092 0.3519 0.390 0.163 38850
Mahalanobis Association 68.4670 2.956 2.041 0.157 0.271 370060 516321 37788 0.3466 0.386 0.165 40026
SDVTracker (Ours) 68.9816 2.199 1.633 0.131 0.248 362560 510970 35433 0.3475 0.391 0.162 38438

LiDAR
+

Camera

IoU-based Association 66.5809 4.236 2.549 0.192 0.295 416723 503642 51731 0.3586 0.384 0.167 43417
L2 Association 68.1027 3.303 2.334 0.162 0.294 386467 497147 43991 0.3554 0.388 0.163 40572
Mahalanobis Association 68.6031 3.056 2.118 0.160 0.287 366913 504202 39521 0.3498 0.385 0.165 41251
SDVTracker (Ours) 69.4405 2.204 1.827 0.133 0.268 346651 504744 33118 0.3485 0.388 0.162 40008

TABLE II
EFFECT OF LEARNING JOINT TRACKING AND ASSOCIATION

Network IMM Learning State MOTA ↑ MOTVO ↓ MOTVE ↓ IDSW ↓
MLP X 69.2221 2.448 0.1446 37594
MLP X X 69.3863 2.385 0.1413 34698

LSTM X 69.2877 2.428 0.1419 35862
LSTM X 69.3971 2.240 0.1528 34031
LSTM X X 69.4405 2.292 0.1393 33118

TABLE III
EFFECT OF LEARNING PROBABILITY AND SCORE

Association Output MOTA ↑ MOTVO ↓ MOTVE ↓ IDSW ↓
Probability Only 69.1837 2.544 0.1466 35419

Score Only 69.3618 2.551 0.1448 39461
Probability and Score 69.4405 2.292 0.1393 33118

better velocity estimates. This further demonstrates the need
of metrics that measure higher order states when evaluating
object tracking in 3D.

Furthermore, as more sensors are added to the system, we
see an improvement in the overall MOTA and false negatives
of methods. However, this comes at the cost tracking more
objects, increasing the absolute number of velocity outliers.
We show that our learned methods can better incorporate
new sensor observations by reducing velocity outliers by
17%, ID switches by 16% and false positives by 5%. While
Mahalanobis association sees a degradation in performance
by around 3.3%, our learned method sees an increase in
velocity outliers by 0.2%, all the while tracking more objects.

D. Impact of Recurrent Networks

We implement two learned network architectures for our
learned association and tracker. For the recurrent network,
we train on truncated sequences of length 20. We compare
the performance of a Recurrent Neural Network (RNN) to
a feedforward Multi-Layer Perceptron (MLP) in Table II.
While both networks outperform classical association meth-
ods, we see a small increase in performance with the
recurrent network.

E. Ablation on Joint Association-State Estimation

To understand the impact of jointly learning association
and state estimation, we trained a recurrent and a feed-
forward network with and without including state estimation
learning as a model output. The results are outlined in Table
II. We see that regressing the state information improves

Fig. 5. As the number of pedestrians in a scene grows, our method is
increasingly more effective at reducing velocity outliers than engineered
methods. Analysis was performed on over 900 scenes bucketed by the
number of pedestrians across a 25s interval, with each bucket including
at least 20 scenes.

performance for both network architectures. Further, we
investigate how the model’s learned state compares with the
filtered IMM state. We see that while the model’s learned
state produces fewer velocity outliers, its average velocity
and MOTA are worse compared to using the IMM, which
motivates our hybrid method.

F. Ablation on Score Regression

We evaluate the effectiveness of learning both an asso-
ciation probability and a score, as discussed in Section III,
in Table III. For the probability only model, we break ties
between candidate detections based on the higher probability.
For the score only model, we considered all scores below
0.1 as candidate associations. Based on the results, we see
that neither breaking ties with the probability or thresholding
based on the score perform better than explicitly learning a
probability and a score.

G. Impact of Pedestrian Density

In dense crowds, a mis-association can cause a tracked
object to have poor velocity estimates, which degrades
system performance. Fig. 5 examines the performance of
SDVTracker as the number of pedestrians in a scene is
increased in terms of ID switches and velocity outliers. As
pedestrian density increases, our proposed method performs

Fig. 6. (left) Classical Mahalanobis association and tracking. (right) SDVTracker, our system for learned association and tracking, which shows fewer
velocity outliers. Circles represent tracked VRUs and orange vectors represent velocity estimates. See attached supplemental material for video versions.

better than hand-engineered association on both metrics. In
scenes with 100+ pedestrians, the learned model reduces
poor velocity estimates by 45%, demonstrating our learned
model approach scales better than classical methods.

H. Runtime Performance

We show the runtime performance of the system in Fig. 7,
evaluated on a four core Intel i7 CPU and a NVIDIA RTX
2080Ti GPU. We see that model runs under 5 ms for 500
actors on a CPU and under 3 ms on a GPU. It is interesting
to note that for scenes with less than 100 VRUs, it is faster
to run on CPU than using a dedicated GPU.

I. Qualitative Performance

Fig. 6 shows representative output of the classical Maha-
lanobis association and tracking compared to SDVTracker
on a typical scene with VRUs. We see fewer velocity
outliers, which yields better self-driving vehicle performance.
Please refer to the provided supplemental video to see the
SDVTracker in operation.

V. CONCLUSION AND FUTURE WORK

We presented SDVTracker, a method for learning multi-
class object-detection association and motion state estima-
tion. We demonstrate that this algorithm improves tracking
performance in a variety of metrics. In addition, we introduce
new tracking metrics important in self-driving applications
that measure the quality of the velocity estimates and show
that SDVTracker significantly outperforms the compared
methods. Furthermore, we demonstrate that SDVTracker
generalizes to multiple sensor modalities, increasing recall
with the addition of the camera sensing modality. Finally,
we show this method is able to handle scenes of 100 actors
under 2.5 ms, making it suitable for operation in real-time
applications.

The performance of the learned state obtained directly
from the LSTM was similar to the one obtained by the IMM,
opening a door for new experiments to potentially remove the
IMM from the algorithm while maintaining the performance.
We plan to also augment the algorithm to learn the object
life policy, controlling when to birth new objects and reap

old ones. Finally, we further plan to extend SDVTracker by
adding additional sensors, such as RADAR, to the system.

Fig. 7. Model inference runtime on CPU and GPU as a function of the
number of actors in a scene. The model scales approximately linearly with
the number of actors and for a typical scene with 100 actors runs under 2.5
ms on CPU.

VI. ACKNOWLEDGEMENTS

We would like to acknowledge and thank several peo-
ple at Uber ATG who have made this research possible.
We thank Blake Barber, Carl Wellington, Chengjie Zhang,
David Wheeler, Gehua Yang, Kyle Ingersoll, Narek Melik-
Barkhudarov, and Ralph Leyva for their support.

REFERENCES

[1] W. H. O. D. of Violence, I. Prevention, W. H. O. Violence, I. Pre-
vention, and W. H. Organization, Global status report on road safety:
time for action. World Health Organization, 2009.

[2] N. Djuric, V. Radosavljevic, H. Cui, T. Nguyen, F.-C. Chou, T.-H.
Lin, N. Singh, and J. Schneider, “Uncertainty-aware short-term motion
prediction of traffic actors for autonomous driving,” IEEE Winter
Conference on Applications of Computer Vision (WACV), 2020.

[3] J. Hong, B. Sapp, and J. Philbin, “Rules of the road: Predicting driving
behavior with a convolutional model of semantic interactions,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 8454–8462.

[4] H. Cui, V. Radosavljevic, F.-C. Chou, T.-H. Lin, T. Nguyen, T.-K.
Huang, J. Schneider, and N. Djuric, “Multimodal trajectory predictions
for autonomous driving using deep convolutional networks,” in IEEE
International Conference on Robotics and Automation (ICRA), 2019.

[5] S. Thrun, “Probabilistic robotics,” Communications of the ACM,
vol. 45, no. 3, pp. 52–57, 2002.

[6] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the fourteenth international conference on artificial intelligence and
statistics, 2011, pp. 627–635.

[7] A. Sadeghian, A. Alahi, and S. Savarese, “Tracking the untrackable:
Learning to track multiple cues with long-term dependencies,” in Pro-
ceedings of the IEEE International Conference on Computer Vision,
2017, pp. 300–311.

[8] H. Farazi and S. Behnke, “Online visual robot tracking and identifi-
cation using deep LSTM networks,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2017,
pp. 6118–6125.

[9] W. Zhang, H. Zhou, S. Sun, Z. Wang, J. Shi, and C. C. Loy, “Robust
multi-modality multi-object tracking,” 2019.

[10] L. Zhang, Y. Li, and R. Nevatia, “Global data association for multi-
object tracking using network flows,” in 2008 IEEE Conference on
Computer Vision and Pattern Recognition. IEEE, 2008, pp. 1–8.

[11] E. Ohn-Bar and M. M. Trivedi, “Looking at humans in the age of
self-driving and highly automated vehicles,” IEEE Transactions on
Intelligent Vehicles, vol. 1, no. 1, pp. 90–104, 2016.

[12] P. S. Maybeck, Stochastic models, estimation, and control. Academic
press, 1982.

[13] B. Allotta, A. Caiti, R. Costanzi, F. Fanelli, D. Fenucci, E. Meli, and
A. Ridolfi, “A new auv navigation system exploiting unscented kalman
filter,” Ocean Engineering, vol. 113, pp. 121–132, 2016.

[14] A. Genovese, “The interacting multiple model algorithm for accurate
state estimation of maneuvering targets,” 2001.

[15] Y. Li, C. Huang, and R. Nevatia, “Learning to associate: Hybrid-
boosted multi-target tracker for crowded scene,” in 2009 IEEE Con-
ference on Computer Vision and Pattern Recognition. IEEE, 2009,
pp. 2953–2960.

[16] C.-H. Kuo, C. Huang, and R. Nevatia, “Multi-target tracking by on-line
learned discriminative appearance models,” in 2010 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition.
IEEE, 2010, pp. 685–692.

[17] S. Kim, S. Kwak, J. Feyereisl, and B. Han, “Online multi-target
tracking by large margin structured learning,” in Asian Conference
on Computer Vision. Springer, 2012, pp. 98–111.

[18] Y. Xiang, A. Alahi, and S. Savarese, “Learning to track: Online multi-
object tracking by decision making,” in Proceedings of the IEEE
international conference on computer vision, 2015, pp. 4705–4713.

[19] P. Lenz, A. Geiger, and R. Urtasun, “FollowMe: Efficient online
min-cost flow tracking with bounded memory and computation,”
in Proceedings of the IEEE International Conference on Computer
Vision, 2015, pp. 4364–4372.

[20] A. Milan, S. H. Rezatofighi, A. Dick, I. Reid, and K. Schindler,
“Online multi-target tracking using recurrent neural networks,” in
Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[21] S. Schulter, P. Vernaza, W. Choi, and M. Chandraker, “Deep network
flow for multi-object tracking,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 6951–6960.

[22] A. Rangesh and M. M. Trivedi, “No blind spots: Full-surround multi-
object tracking for autonomous vehicles using cameras and lidars,”
IEEE Transactions on Intelligent Vehicles, vol. 4, no. 4, pp. 588–599,
2019.

[23] J. Munkres, “Algorithms for the assignment and transportation prob-
lems,” Journal of the society for industrial and applied mathematics,
vol. 5, no. 1, pp. 32–38, 1957.

[24] Y. Bar-Shalom, F. Daum, and J. Huang, “The probabilistic data
association filter,” IEEE Control Systems Magazine, vol. 29, no. 6,
pp. 82–100, 2009.

[25] E. Bochinski, V. Eiselein, and T. Sikora, “High-speed tracking-by-
detection without using image information,” in 2017 14th IEEE In-
ternational Conference on Advanced Video and Signal Based Surveil-
lance (AVSS). IEEE, 2017, pp. 1–6.

[26] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime
tracking with a deep association metric,” in 2017 IEEE international
conference on image processing (ICIP). IEEE, 2017, pp. 3645–3649.

[27] G. P. Meyer, A. Laddha, E. Kee, C. Vallespi-Gonzalez, and C. K.
Wellington, “Lasernet: An efficient probabilistic 3d object detector
for autonomous driving,” in The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2019.

[28] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2980–2988.

[29] S. Song, Z. Xiang, and J. Liu, “Object tracking with 3d lidar via
multi-task sparse learning,” in 2015 IEEE International Conference
on Mechatronics and Automation (ICMA). IEEE, 2015, pp. 2603–
2608.

[30] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian
deep learning for computer vision?” in Advances in neural information
processing systems, 2017, pp. 5574–5584.

[31] K. Bernardin and R. Stiefelhagen, “Evaluating multiple object tracking
performance: the clear mot metrics,” EURASIP Journal on Image and
Video Processing, vol. 2008, pp. 1–10, 2008.

[32] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler,
“Mot16: A benchmark for multi-object tracking,” arXiv preprint
arXiv:1603.00831, 2016.

