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Abstract— Change-over-time objects such as pedestrians and
vehicles remain challenging for scan-to-map pose estimation
using 3D LiDAR in the field of autonomous driving because
they lead to incorrect data association and structural occlusion.
This paper proposes a novel semantic grid map (SGM) and
corresponding algorithms to estimate the pose of observed scans
in such scenarios to improve robustness and accuracy. The algo-
rithms consist of a Gaussian mixture model (GMM) to initialize
the pose, and a grid probability model to keep estimating the
pose in real-time. We evaluate our algorithm thoroughly in
two scenarios. The first scenario is an express road with heavy
traffic to prove the performance towards dynamic interferences.
The second scenario is a factory to confirm the compatibility.
Experimental results show that the proposed method achieves
higher accuracy and smoothness than mainstream methods, and
is compatible with static environments.

I. INTRODUCTION

3D-LiDAR-based pose estimation is one of the most
widely used on-line vehicle self-localization methods in the
Global Navigation Satellite System (GNSS) signal denied
or disturbed environments for autonomous driving. Data
association from the observed scans to the pre-defined en-
vironmental map (scan-to-map) is the most critical step
for such approaches, and the association reliability mainly
determines the system performance. Dynamic interference
in the observed scans has been a long-term challenge for
data association in two aspects: (1) It provides time-varying
features not present in the map that lead to incorrect data
association; (2) It occludes extensive environmental features
that lead to data association quantity reduction.

In order to suppress such impacts, one approach is to
perceive the presence of incorrect data association during
the pose convergence iteration and thus eliminate dynamic
objects. However, this approach relies on the fact that the
correct data association takes the dominant effect so that the
outliers can be identified based on their significant distance
error. Therefore, it’s time-consuming and relatively unreli-
able. In this study, we focus on another approach, which is
to directly exclude dynamic objects from the observed scans
before data association. Our idea is to ensure the stationary
status of the data association candidates by introducing
semantic features. Such features should be widespread and
generally static in urban environments.
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Fig. 1. The semantic point cloud map (SPCM) used in this study contains
a sparse point cloud with only three kinds of static semantic features, which
are poles, facades, and road surface marks.

Yu et al. [1] propose a semantic alignment method for
city-scale LiDAR data by the data association limited to
six kinds of semantic objects extracted from two dense
point cloud maps. The features include facades, roads, poles,
cars, segments, and lines. Their method achieves higher
alignment accuracy than the mainstream methods. However,
these semantic features (i.e., cars) are not designed to solve
the challenges of dynamic scenarios, and a single scan is
too sparse to extract segments and lines. Their map-to-map
alignment method also faces a considerable gap to meet
the real-time requirement of the vehicle self-localization.
Inspired by their idea, we extract the static semantic features
of poles, facades, and road surface marks using a dense
semantic segmentation method [2]. Fig. 1 shows the semantic
point cloud maps (SPCM) generated in this process.

Comparing to the inter-frame LiDAR-odometry, it is more
accurate and robust to utilize the semantic information in
real-time localization based on pre-defined maps with global
consistency. However, there are several unique challenges
remaining for the scan-to-map localization of this study: (1)
The relative structural loss of the observed scan comparing
with the pre-defined map is much more significant than that
in inter-frame scans of the LiDAR-odometry; (2) Computing
efficiency is highly required to reach real-time performance;
(3) The pose initialization needs to be fast enough to com-
plete initial localization in large scale maps.

In this study, we propose a novel semantic grid map
(SGM) based on the SPCM, in order to improve the scan-
to-map localization by alleviating the aforementioned three
challenges. The semantic categories and the corresponding
probabilities are assigned to each grid. By projecting the
SPCM into SGM, we significantly speed up the calculation
while guaranteeing the robustness towards dynamic inter-
ference. We realize a Gaussian mixture model (GMM) to
initialize the pose of the observed scan in the SGM. After
the initialization, we design a grid probability model to keep
track of the vehicle in the SGM. We evaluate our method
on an express road with heavy traffic. In both the pose



initialization and real-time localization, the proposed SGM
and corresponding algorithms outperform the mainstream
methods in precision and calculation speed. We also apply
our method in a factory with generally static environment to
confirm the compatibility.

The rest of the paper is organized as follows. Section II
reviews related work. Section III introduces the SGM rep-
resentation. Section IV describes our localization algorithms
in detail. Section V provides the experimental evaluation of
our method. Finally, Section VI concludes this paper.

II. RELATED WORK

LiDAR localization approaches based on pre-defined maps
can be classified according to their data association methods.

Point-based methods represented by Iterative Closest
Points (ICP) [3] directly associate the observed points to
the points on the map and get the result by converging the
point-to-point optimization functions. Normal Distributions
Transform (NDT) [4] transforms localization into a probabil-
ity problem to solve and increases the robustness. Deschaud
[5] proposed the IMLS-SLAM method to solve the data asso-
ciation problem by least-squares optimization and achieved
high accuracy on the KITTI database. However, the point-
based methods generally have poor real-time performances,
therefore not suitable for on-board applications.

Gird-based methods can improve real-time performance
by shrinking the map size. Levinson et al. [6] achieved a
centimeter-level localization accuracy based on the proba-
bilistic grid whereby every cell is represented as its own
Gaussian distribution over remittance values. Wan et al. [7]
proposed a similar method that is widely used in autonomous
driving projects. Yang et al. [8] relieved ICP’s local minima
problem by combining a branch-and-bound (BnB) scheme.
These methods can achieve high localization accuracy with
great calculation speed in low dynamic scenes. However, just
like the point-based methods, once the static correct data
associations don’t take the dominant effect, such methods
will also suffer a severe accuracy loss.

Feature-based methods are currently the mainstream ap-
proach. Such methods extract abstract geometric structures
such as lines and planes [9]. Generalized ICP (GICP) [10]
realizes a plane-to-plane strategy that adopts the covariance
matrices of the local surfaces to match with the point
cloud. The Normal ICP (NICP) [11] assigns local geometric
information of normal and curvature to the points to enrich
the matching dimensions to improve the robustness further.
LiDAR Odometry and Mapping (LOAM) [12], as one of the
state-of-the-art methods, extracts edges and planes with great
accuracy from the relatively sparse point clouds. Shan et al.
[13] proposed a lightweight and ground-optimized LOAM
variant that improved both speed and accuracy. Although
these methods emphasize the structure of the objects, dy-
namic objects such as vehicles can also form local structures
with strong consistency. Therefore, although feature-based
methods are more robust to dynamic interference, they still
cannot overcome the challenges brought by high-dynamic
scenarios.

Descriptor-based methods cluster the point cloud into
blocks and calculate the similarity between the observed
scans and the maps based on the geometric measurement
criteria. Dubé et al. [14] trained a similarity criteria. Lu
et al. [15] designed a deep learning network to learn the
point cloud characteristics and established the corresponding
descriptor. Both these two methods efficiently improved the
global localization performance, however, they have rela-
tively slow calculation speed and poor interpretability.

To the best of our knowledge, the semantic category is one
of the few (if not the only) features that can directly exclude
the dynamic objects from the data association. Compared
with the use of semantic cues in image-to-map registration
tasks[16], LiDAR-based scan-to-map registration is more
challenging due to the sparse information. Pole-like objects
[17], [18], [19] and road surface marks [20], [21], [22] are
often used for data association as their semantics strongly
indicate these objects are static. In specific scenarios, these
methods can eliminate the drawbacks caused by dynamic
objects. But, relying on a single semantic feature will often
result in a localization failure because of the occlusion and
lack of structure. As introduced in the last section, Yu et al.
[1] proposed a semantic alignment method that combined
multiple semantic features to achieve higher localization
accuracy. Parkison et al. [23] proposed a localization method
based on the high-precision semantic segmentation of the
dense point cloud. Chen et al. [24] computed semantic
segmentation results in point-wise labels for the whole scan,
allowing them to build a semantically-enriched map with
labeled surfels. The global semantic segmentation process in
these methods is time-consuming even on high-performance
processors, therefore, it is almost impossible for on-line real-
time applications.

III. SEMANTIC GRID MAP REPRESENTATION

To accurately estimate the vehicle position, sufficient
pose constraints from various directions and elevations are
necessary. However, due to the sparseness of the point cloud,
the static semantics extractable from a single LiDAR scan
is relatively limited. For high-layer and ground semantics,
facades and road surface marks are two robust static ones
widespread in urban scenarios. However, in the middle layer,
where the dynamic interferences are the most severe, it’s
typically challenging to find such features. Our idea is to
strictly limit the static semantics, so as to distinguish them
from the potentially dynamic ones effectively. Therefore, we
choose only pole-like features, which implies that the objects
are tree trunks or telephone poles.

Fig. 2 demonstrates the data structure of the proposed
semantic grid map. Each grid is represented by the category
determined by the semantic feature that has the most points,
and the corresponding probability that is the proportion
within the total points of this grid. Since the wrong data asso-
ciations often occur at the boundaries of different categories
(such as poles at the edges of the facade), the introduction
of probability can weaken such impact. In some rare cases,
SPCM contains some invalid semantic points, such as poles



Fig. 2. Semantic grid map representation. Each occupied grid contains the
information of the category and the corresponding probability.

formed by reeds. Although such points generally belong to
static objects, it’s obvious that they are not stable in the
long term. What these features have in common is that their
point clouds are more sparse than those intrinsically static
features. Therefore, this paper removes such structures by a
point number threshold.

IV. LOCALIZATION

In this section, we describe our algorithm for the on-
line pose initialization and real-time vehicle self-localization
tasks. We denote the coordinate of the units in the sub-map
M of the SGM as m1, ...,mJ , and the units in the observed
scan S as s1, ..., sK , where J and K are the number of
units respectively. For the initialization task, the original pose
must search a wide range to avoid various local minima.
At the same time, the calculation can take relatively longer
(several seconds is acceptable). Therefore, to keep as much
map detail as possible, the SGM is in 3D formed by cubes.
On the contrary, the localization task can inherit a much
more accurate initial position from the previous frame while
it requires strict real-time performance (typically 100ms), the
SGM is in 2D formed by squares.

A. On-line Pose Initialization

In order to initialize the vehicle pose in GNSS denied
areas, this paper proposes a GMM-based semantic categories
to represent the pose initialization problem. We first generate
a 3D SGM, and characterize each semantic category of this
study as a Gaussian model. This model only focuses on the
horizontal distribution as all of the three semantic categories
in this study are vertically uniformly distributed. We can
regard each cube of the observed scan SK×3 as a mean value
of the GMM, and each cube of the sub-map MJ×3 as the
corresponding Gaussian distributed samples. The response
probability of the GMM can be represented as

P (mj) =

K∑
k=1

P (sk)P (mj |sk) (1)

where P (sk) is each component of the GMM of cube k.
By considering the category probability of mj and a penalty
term for outliers and noise w inspired by [25], we can extend
the expression as

P (mj , Cmj
) = w

1

J

+(1− w)

K∑
k=1

P (Cmj |mj , sk)P (mj |sk)P (sk)
(2)

where Cmj
is the corresponding semantic category of cube

mj . We define the semantic confidence to associate the kth

scan cube to the jth map cube as

P (Cmj
|mj , sk) =

{
max(np,nf ,nr)

N Cmj
= Csk

0 Cmj
6= Csk

(3)

where Csk is the semantic category of cube sk of the scan,
and np, nf , nr are the number of points in each semantic
category of poles, facades, and road surface marks of cube
mj respectively, while N is the total point number in cube
mj . And we have

P (mj |sk) =
1

2π|Σk|
1
2

exp(−1

2
(mj − sk)T Σ−1

i (mj − sk))

(4)
where Σk is the variance of the kth component need to be
solved. The pose initialization can be represented as

T ∗ = arg max
T

P (M,CM ) =

J∏
j=1

P (mj , Cmj
) (5)

where the transformation matrix T is to decide the data
association pairs of mj and sk in Equ. 2. T ∗ is to be found
by maximizing the data association probability.

To solve the Σk and T , we use the expectation-
maximization (EM) algorithm, whose solving process can
be found in [25]. The role of semantic categories in this
process is shown in Fig. 3. The three semantic categories are
denoted as circles in blue, yellow, and green. Traditional non-
semantic localization methods like CPD only consider the
geometric distances between the points (or grids) between the
observed scan and the map. Therefore they cannot distinguish
the wrong data association (3(a)) and the correct one (3(b)).

(a) Wrong association. (b) Correct association.

(c) Non-semantic probability. (d) Semantic probability.

Fig. 3. An example of localization initialization using semantic categories
in the probabilistic data association.

Considering the resolution difference between one frame
LiDAR scan and the dense map, which is challenging for
scan-to-map pose estimation, the semantic grid map repre-
sentation can efficiently narrow such gap by down-sampling
the map and enhancing the sparse scan at the same time.
The GMM ensures such a strategy to reach a localization
accuracy exceeding the grid resolution.



B. Real-time Localization

Probabilistic data association provides an effective frame-
work for solving the impact of incorrect data association on
the localization algorithm. As mentioned at the beginning
of this section, we denote the squares in the 2D SGM as
M = {mj}, and the squares in the observed scan after
gridding as S = {sk}. The associated pairs set between M
and S is denoted as A = {aj,k} where aj,k = (mj , sk). The
residual error is denoted as ς = M − T × S where T is the
transformation matrix. The semantic category is denoted as
C. The localization problem can be represented as

T ∗ = arg max
T

P (ς, C,A|M,S) (6)

Use the Bayes Rule, this product is factored as

P (ς,C,A|M,S)

∝ P (ς|A,M,S)︸ ︷︷ ︸
error

P (C|A,M,S)︸ ︷︷ ︸
label

P (A|M,S)︸ ︷︷ ︸
geometry

(7)

The error term is defined as

P (ς|A,M,S) =
∏

exp(
−‖mj − Tsk‖2

2
) (8)

and the label term is same to Equ. 3.
Eventually, this paper adopts the traditional geometric

association as a protection term. To avoid overemphasizing
the effect of Euclidean registration and thus weakening the
semantic information, this paper uses the k nearest neighbors
(KNN) structure under the uniform distribution to facilitate
the search of the k nearest association category as

p(A|M,S) =

{
1/k knn
0 otherwise

(9)

According to the above association method, this paper
assumes that the errors conform to the Gaussian distribution.
The model needs to solve two unknown variables, one
is data association probability, and the other is the pose
transformation matrix T . The EM algorithm is also used to
solve this problem as elucidated in reference [25].

V. EXPERIMENTAL EVALUATIONS

We evaluated our method in two scenarios. The first one
is an express road with heavy traffic to test the performance
under strong dynamic interferences, as shown in Fig. 4(a).
The second one is a factory with a generally static environ-
ment to confirm the compatibility, as shown in Fig. 4(b). The
two vehicle platforms are equipped with a HESAI Pandar-
40P LiDAR and a Velodyne VLP-16 LiDAR respectively.
Both platforms have computing resources of the Intel i7-
7567U CPU @3.5GHz with 16GB memory. The calculation
times of our method in the experiments include the semantic
features extraction from the observed scan, which is based
on geometric rules.

In the map generation process, the GNSS positioning
results are used as ground truth data. Then, the SPCM
is generated from the semantically segmented point cloud
consistent with GNSS [2]. Fig. 5 shows a part of the SPCM
of the express road with the three semantic categories.

(a) Express road. (b) Factory.

Fig. 4. The experimental platforms and environments.

Fig. 5. An example of SPCM of the express road. The three semantic
categories (poles-red, facades-white, road surface marks-green) can be easily
identified.

A. On-line Pose Initialization

We randomly selected 100 different poses on the straight
express road to evaluate our method. The SGM is a 3D grid
map that each grid is a cube with a side length of 0.2m. As
the pose initialization is sensitive to both the horizontal offset
and the orientation error, in this experiment the horizontal
offset is set as a uniform distribution up to 50m, and the
orientation error is set to 30◦, 60◦, and 90◦.

We compared our results with Coherent Point Drift (CPD)
[25], which is a widely used method for pose initialization.
The result can be found in Table I. It shows that our method
has a better robustness and overall accuracy especially when
the initial pose is set with the orientation error over 60◦.
We also compared the calculation time of orientation error
at 90◦which is considered as the worst case. The proposed
method takes less than half time than CPD. It proves that
the semantic-category-based method in this paper can speed
up the iteration and reduce the time consumption.

From Table I we can see that CPD generally converge to
the correct heading angle when the orientation error is set
to 90◦on the straight road experiment. We also demonstrate
a special case of the pose initialization at a conjunction of
the express road to further illustrate the effectiveness using
semantic categories under the same orientation setting, as
shown in Fig. 6. The semantic categories of road surface
marks and poles are represented in red and green, and the
observed scan is rendered in white, as shown in Fig. 6(b).
Because the distance between the road surface marks of the



TABLE I
ACCURACY AND CALCULATION TIME EVALUATIONS FOR THE POSE

INITIALIZATION EXPERIMENT.

Trans.(m) 30◦ 60◦ 90◦

CPD Mean 0.17 0.19 6.42
Max 0.18 0.50 67.3

Our method Mean 0.08 0.18 0.13
Max 0.12 0.24 0.30

Yaw.(◦) 30◦ 60◦ 90◦

CPD Mean 0.18 0.19 3.83
Max 0.20 0.48 6.80

Our method Mean 0.13 0.13 0.11
Max 0.16 0.16 0.18

Calculation time (s) 90◦

CPD Mean 7.25

Our method Mean 3.23

TABLE II
ACCURACY EVALUATIONS FOR THE LOCALIZATION EXPERIMENT ON

THE EXPRESS ROAD.

Lat.(m) Lon.(m) Trans.(m) Yaw.(◦)

Semantic ICP 0.20 0.24 0.31 0.20
Grid Localization 0.11 ≥ 2 ≥ 2 ≥ 2

Poles 0.37 0.33 0.55 1.86
Road marks 0.10 ≥ 2 ≥ 2 0.37

Facades 0.09 - - 0.54
Our method 0.08 0.12 0.16 0.27

observed scan and the poles of the map are geometrically
closer, CPD rotates to the wrong direction from the very
beginning of the iteration, and eventually converged to the
local minimum. On the contrary, the semantic category plays
an important role, and leads the iteration to the correct pose.

B. Real-time Localization

In the 5.2km express road experiment, we compared our
result with the Semantic ICP [23] and a traditional non-
semantic approach of the occupancy grid localization using
weighted point cloud[26]. We also compared our result with
using each one of the three semantic categories separately to
show the effectiveness using multiple semantic features.

Table II shows that our method significantly outperformed
other methods and the stand-alone semantic categories in
terms of transformation accuracy. For the Grid Localization
method and stand-alone road surface marks, the express road
is not a geometrically salient scenario in longitude (also
known as corridor effect). Due to such failure, Gird Local-
ization also failed to achieve reasonable yawing accuracy.
For the same reason, the facades are parallel to the road
direction; therefore, they can’t provide any longitudinal pose
constrain. The comparison of the calculation time proves the
efficiency of this approach, as shown in Table III. Table IV
compares the size of different kind of maps, from where we

(a) Conjunction scene. (b) Initial position.

(c) CPD second iteration. (d) CPD result.

(e) Our method second iter-
ation.

(f) Our method result.

Fig. 6. A special case at the conjunction of the express road that CPD
failed to converge to the correct position.

can see proposed semantic grid map takes up the smallest
storage space.

TABLE III
CALCULATION TIME EVALUATIONS FOR THE LOCALIZATION

EXPERIMENT ON THE EXPRESS ROAD.

Method Mean operation time(ms)

Semantic ICP 150.40
Grid Localization 44.03

Poles 15.14
Road marks 16.34

Facades 14.08
Our method 23.41

In the factory experiment, our method can also achieve a
comparable accuracy to the express road condition, where
the comparison can be found in Table V. The main reason is
that in factory experiment, there are more structural features
which are beneficial for SGM-based localization.

VI. CONCLUSION

In this paper, we proposed a localization method based on
the semantic grid map (SGM) with poles, facades, and road
surface marks. Such map is small in size and rich in informa-
tion. By introducing the Gaussian mixture model (GMM) to
the semantic features, the corresponding pose initialization
method improved the robustness and accuracy while reduced
the calculation time by half comparing to the traditional non-
semantic baseline. In the real-time localization process, this



TABLE IV
MAP STORAGE SIZE COMPARISON.

Map structure Size(MB/km)

Point cloud map ≥ 1000
Semantic point cloud map 34

Grid map 5.3
Semantic grid map (Ours) 1.1

(a) Translation error. (b) Heading error.

(c) Error histogram. (d) Error boxplot.

Fig. 7. Localization result in the factory environment.

paper introduced grid probability to implement a new data
association strategy with semantic information. Experimental
results show that our proposed method is robust and accurate
in not only dynamic scenarios, but also static environments
which guaranteed the adaptability.
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