12th Workshop on Planning, Perception and Navigation for Intelligent Vehicles (PPNIV) October 25th, 2020

BADISCHES LANDESMUSEUM

Exploiting Continuity of Rewards: Efficient Sampling in POMDPs with Lipschitz Bandits Ömer Sahin Tas, Felix Hauser and Martin Lauer

A EV8

A FZ 106

mrc

POMDP Framework

Silver & Veness, *Monte-Carlo Planning in Large POMDPs*, NIPS 2010.

Hubmann et al., *Automated Driving in Uncertain Environments: Planning with Interaction and Uncertain Maneuver Prediction*, Transactions on Intelligent Vehicles 2018.

Silver & Veness, Monte-Carlo Planning in Large POMDPs, NIPS 2010.

Map data

 $\rho = (p_i)_{i=1,...,n}$ $p_i = (x_i, y_i, l_i, \kappa_i, v_i)^{\top}$

States, Observations, Actions

$$s = (s_0, s_1, s_2, \dots, s_k)$$
 $s_0 = (l_0, v_0)$ $s_k = (l_k, v_k, \rho_k)$

$$o = (o_1, o_2, \dots, o_k)$$
 $o_k = (x_k, y_k, v_k)^\top$

$$a \in [-3\,{\rm m\,s^{-2}}, 1\,{\rm m\,s^{-2}}]$$

Transition Model

$$a_k = \max(a_{\operatorname{ref},k} + a_{\operatorname{int},k}, a^-) + a_{\operatorname{noise},k}$$

Observation Model

 $(l, v, \rho) \rightarrow (x, y, v)$

$$x_{\text{noise}}, y_{\text{noise}} \sim \mathcal{N}(0, \sigma_{o, \text{pos}}^2)$$

 $v_{\text{noise}} \sim \mathcal{N}(0, \sigma_{o, \text{vel}}^2)$

Tas et al. – Exploiting Continuity of Rewards: Efficient Sampling in POMDPs with Lipschitz – PPNIV @IROS'20

5)

FZ

Reward Model

r

$$= r_{\text{coll}} + r_v + r_{j,\text{lon}} + r_{a,\text{lat}}$$

$$r_{\text{coll}} = \begin{cases} 0 & \text{no collision} \\ \zeta_{\text{coll}} & \text{ego vehicle collides} \end{cases}$$

$$r_v = \begin{cases} \zeta_v \ (v_0 - v_{\text{ref}})^2 & \text{if } v_0 \ge v_{\text{ref}} \\ \zeta_v \ \log\left(1 + (v_0 - v_{\text{ref}})^2\right) & \text{otherwise} \end{cases}$$

$$r_{j,\text{lon}} = \zeta_{j,\text{lon}} j_0^2$$

$$r_{a,\text{lat}} = \zeta_{a,\text{lat}} \left(\kappa \ v_0^2\right)^2$$

Multi-armed Bandits

$$\mathcal{A} = \{a_1, a_2, \dots, a_K\}$$

Upper Confidence Bound (UCB)

$$b_t(a) = \hat{\mu}_t(a) + c \sqrt{\frac{2\log t}{n_t(a)}}$$

Algorithm 1: Upper Confidence Bound (UCB)

if $t \leq K$ then Choose arm from $\{a : n_t(a) = 0\}$ at random else Choose arm $a_t = \arg \max_{a \in \mathcal{A}} b_t(a)$

UCB-V

$$b_t(a) = \hat{\mu}_t(a) + \sqrt{\frac{2\hat{\sigma}_t^2(a)\log t}{n_t(a)}} + \frac{3c\log t}{n_t(a)}$$

$|\mu(a)-\mu(a')|\leq \mathscr{L}|a-a'|$ if $t\leq T$ then Choose and

Multi-armed Bandits

The term of the formula is a set of the formula in the set of the formula is a set of the formula in the formula is a set of the formula in the formula is a set of the formula in the formula is a set of the formula in the formula

Algorithm 1: POSLB [23, p. 22]

$$\lambda_t(a, a') = \max\left(b_t(a_t^*) - \mathscr{L} |a - a'|, \ \hat{\mu}_t(a')\right)$$

Choose arm $a_t = \arg\max_{a \in \mathcal{A}} \log t - f_t(a)$

POSLB-V

$$\sigma_t^2(a) = \sigma^2 = \frac{n_t(a)}{2\log t} \left(\sqrt{\frac{2\hat{\sigma}_t^2(a)\log t}{n_t(a)}} + \frac{3c\log t}{n_t(a)} \right)^2$$

Pareto Optimal Sampling for Lipschitz Bandits (POSLB)

Too at al. Evaluiting Continuity of Dowordoy Efficient Compliancia DOMDDo with Lineshitz DD

a

Evaluation Convergence

$ \mathcal{A} $	Straight	Curve	S _{Coll}	$\rm S_{I-Lo}$	S_{I-Hi}
5	0.0	-1.0	1.0	-1.0	-1.0
9	0.0	-1.5	1.0	-1.0	-1.5
17	0.0	-1.5	1.0	-1.0	-1.25
33	0.0	-1.0	0.875	-0.875	-1.125

$ \mathcal{A} $	Straight	Curve	S _{Coll}	$\rm S_{I-Lo}$	$\rm S_{I-Hi}$
5	1247	1847	1003	1241	573
9	1271	2157	1981	1345	728
17	1336	2280	2742	1453	787
33	1370	2246	1260	1432	1033

Evaluation Convergence

MAE_n =
$$\frac{1}{m} \sum_{i=0}^{m-1} |a_{i,n}^* - a^*|$$

 $ \mathcal{A} $	Straight	Curve	S_{Coll}	$\rm S_{I-Lo}$	S_{I-Hi}
5	0.0	-1.0	1.0	-1.0	-1.0
9	0.0	-1.5	1.0	-1.0	-1.5
17	0.0	-1.5	1.0	-1.0	-1.25
33	0.0	-1.0	0.875	-0.875	-1.125

$$a_n^* = \arg\max_{a \in \mathcal{A}} Q_n(h_0, a)$$

Tas et al. – Exploiting Continuity of Rewards: Efficient Sampling in POMDPs with Lipschitz – PPNIV @IROS'20

1.5

1.5

Number of Episodes n

Number of Episodes n

 $\cdot 10^{4}$

17

 $\cdot 10^4$

Evaluation

0

1.5

0.5

0

0

 $MAE (m/s^2)$

0.5

0.5

(a) Collision scene.

9

 $\cdot 10^{4}$

33

 $2 \cdot 10^4$

1.5

1.5

Number of Episodes n

Number of Episodes n

0.5

0.5

0

1.5

0.5

0

0

 $MAE (m/s^2)$

Tas et al. – Exploiting Continuity of Rewards: Efficient Sampling in POMDPs with Lipschitz – PPNIV @IROS'20

13

1.5

Evaluation Convergence

9

14

Evaluation Convergence

Evaluation

Tree Depth

- Uncertainties in the transition and observation model have a smoothing effect on the discontinuities
- Utilizing the continuity of Q-values allows significant performance improvements
- POSLB-V bandit algorithm

This work enables the use of POMDPs for problems where multiple actions need to be considered, such as in motion planning.

Thanks!

FZI Research Center for Information Technology

Ömer Sahin Tas Department on Mobile Perception Systems

Haid-und-Neu-Str. 10-14 76131 Karlsruhe

E-Mail: tas@fzi.de

