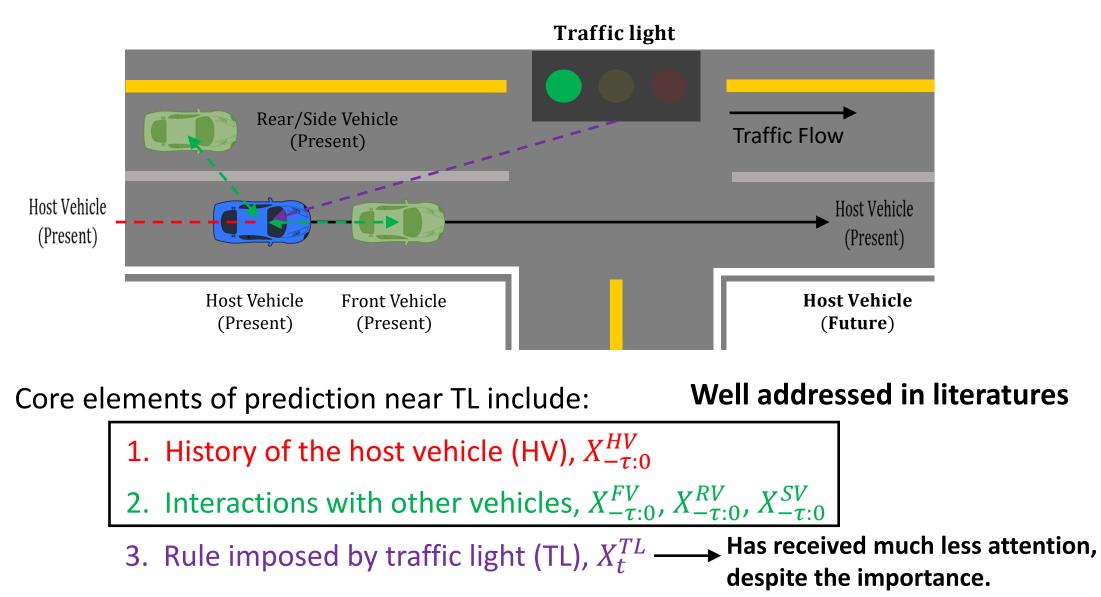
12th Workshop on Planning, Perception, Navigation for Intelligent Vehicle @ IROS2020

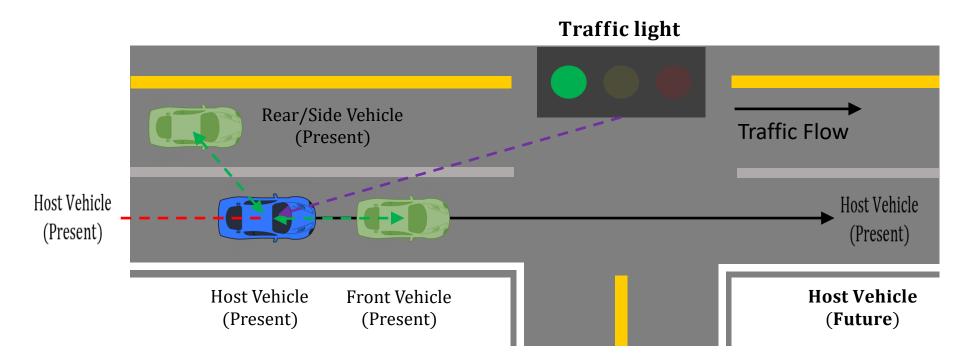
Impact of Traffic Lights on Trajectory Forecasting of Human-driven Vehicles Near Signalized Intersections

Geunseob (GS) Oh, Huei Peng University of Michigan

We tackle this challenging vehicle forecasting problem near traffic lights (TLs) Goal: Trajectory forecasts for the host vehicle, $X_{0:T}^{HV}$.



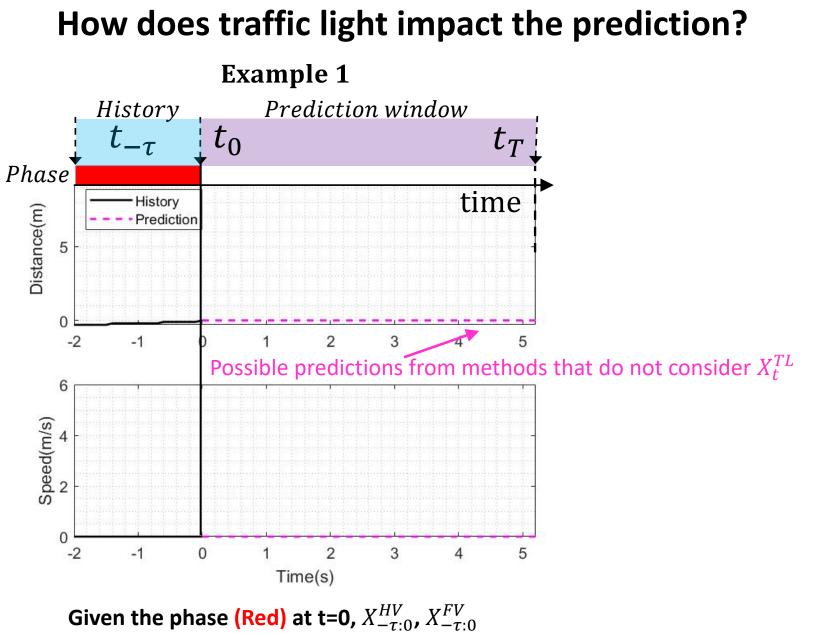
We tackle this challenging vehicle forecasting problem near traffic lights (TLs) Goal: Trajectory forecasts for the host vehicle



Our contribution:

1. Identification of the impacts of traffic lights on prediction; qualitative and quantitative

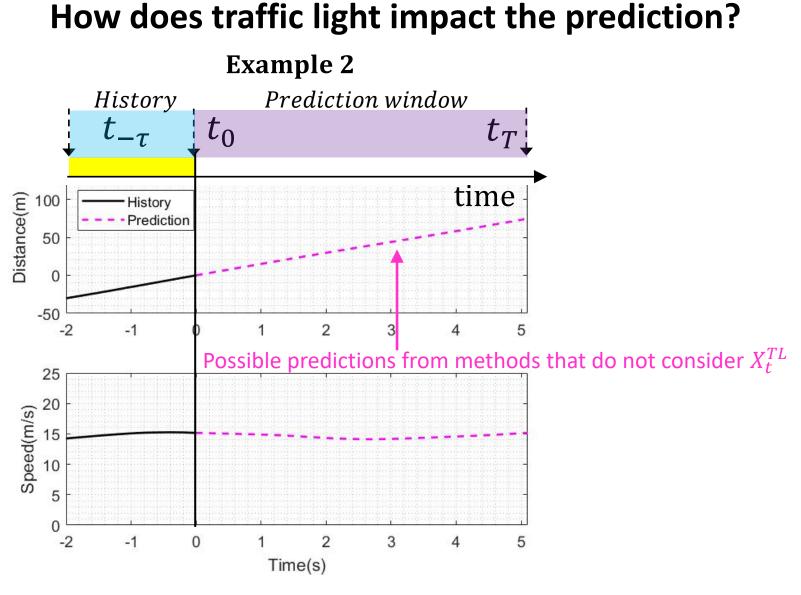
2. **A novel prediction approach** that is mindful of the impacts which utilizes vehicle-toinfrastructure (V2I) communications.



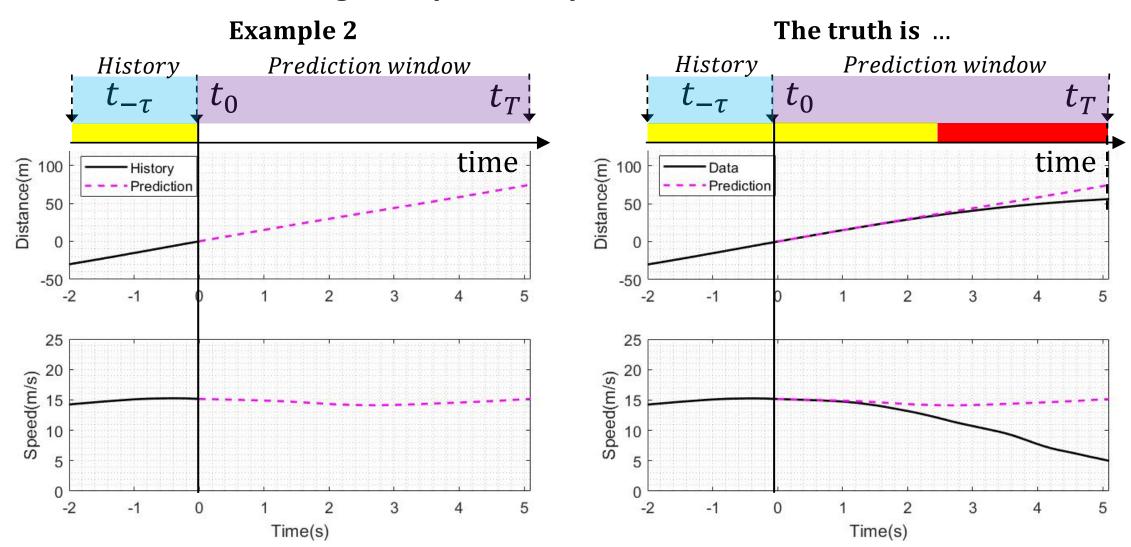
Existing methods would predict HV to stay put

How does traffic light impact the prediction? **Example 1** The truth is ... History Prediction window Prediction window History $t_{-\tau}$ t_0 $t_{-\tau}$ t_0 Tт t_T Phase time time Data History Distance(m) Distance(m) - Prediction Prediction **Ground-truth** 5 5 -2 -1 2 3 5 -2 -1 2 3 Possible predictions from existing methods 6 6 Speed(m/s) Speed(m/s) 0 2 3 5 -2 -1 0 -2 -1 n 2 3 5 4 Time(s) Time(s)

Given the phase (Red) at t=0, $X_{-\tau:0}^{HV}$, $X_{-\tau:0}^{FV}$ Existing methods would predict HV to stay put Actually, the phase changed to Green shortly after. The ground-truth trajectory started accelerating.



Given the phase (Yellow) at t=0, $X_{-\tau:0}^{HV}$, $X_{-\tau:0}^{FV}$ Existing methods would predict HV to keep the speed



How does traffic light impact the prediction?

Given the phase (Yellow) at t=0, $X_{-\tau:0}^{HV}$, $X_{-\tau:0}^{FV}$ Existing methods would predict HV to keep the speed

Actually, the phase changed to Red shortly, The ground-truth trajectory started decelerating.

We propose a solution to the problem we identified

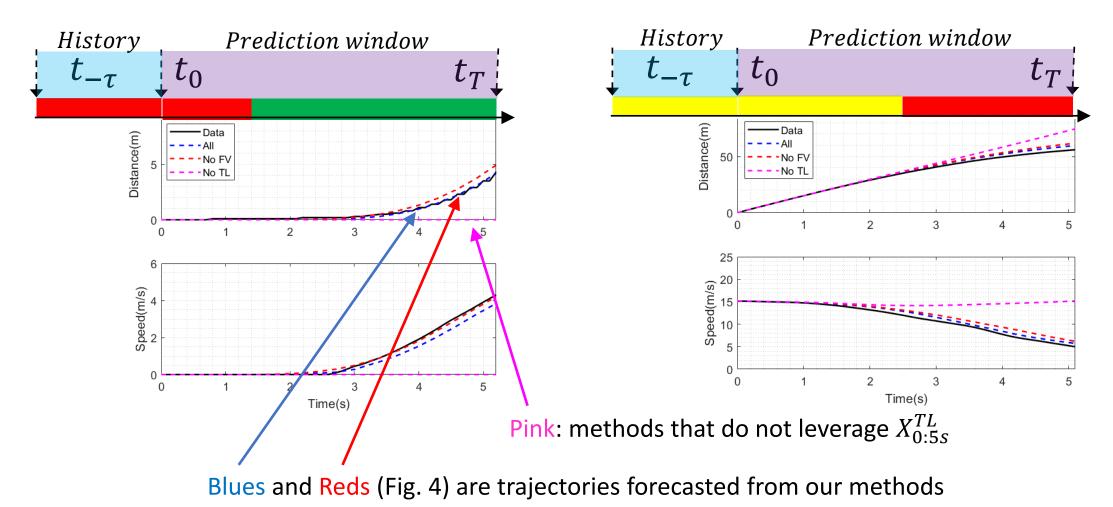
Idea: Utilizing vehicle communications to infrastructures (V2I), obtain the future profiles of TL states ahead of time

Image Reference: USDOT

Future phase and timing can be shared through V2I

A sneak peek of the results

When we leverages the future profiles of TL $(X_{0:5s}^{TL})$, the predictions are so much better!



Prediction model - setup

A data-driven approach

A mapping function f from states to actions

 $f(X_{t-\tau:t}) = a_t^{HV}$ $X_t: \text{ state of the host vehicle + environment at time t}$ $a_t^{HV}: \text{ action of the host vehicle (acceleration)}$

We simplify the problem:

longitudinal prediction with the presence of a preceding vehicle Dataset limitation: rear/side vehicles were not modeled.

Prediction model - setup

In detail, a state is defined as: $X_t \coloneqq [X_t^{HV}, X_t^{FV}, X_t^{TL}, TOD_t]$

Host vehicle state (X^{HV}) :Longitudinal position (i.e., distance to the intersection) & speedContext $(C \coloneqq [X^{FV}, X^{TL}, TOD])$: $X^{FV} \coloneqq [FV_t, r_t, \dot{r}_t]$ FV state: captures interactions with the front vehicle
(binary flag for presence of FV, relative pos, speed) $X^{TL} \coloneqq [P_t, T_t]$ TL state: captures interactions with traffic light
(phase (G,Y,R) and timing (time elapsed since the phase change))TODTime of the day (0-24): macro-scopic traffic characteristicsOutput:Action taken by HV (longitudinal acceleration)

Dataset

We used real-world driving records & traffic light states from SPMD: Naturalistic Driving Records of 3,000 vehicles over 2 years

Host vehicle (GPS, kinematics, time information)

Traffic light (TL state profile)

Front Camera (post-processed information on FV)

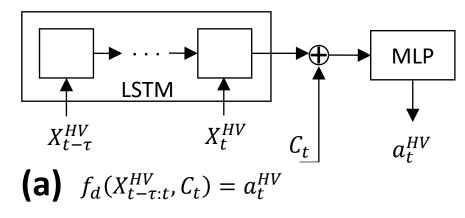
SPMD is a dataset established by USDOT & UMTRI



A signalized intersection (Plymouth-Huron Pkwy, Ann Arbor) was used for a study The study includes 50 cars passed through the intersection Total 502,253 sample trips made during 03/2015 – 05/2017 (27 months)

Prediction model

Deterministic Policy (f_d) Learning: RNN

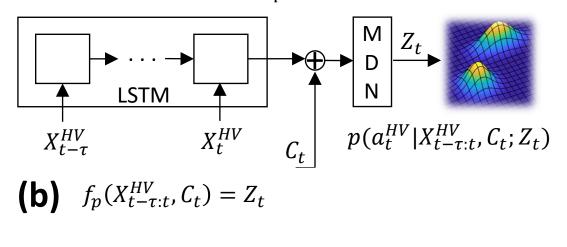


Modeling Intuition

RNN(LSTM) models temporal dependencies

$$L_d := \sum_{t=1}^T (a_t^{HV} - f_d(X_{t-\tau:t}^{HV}, C_t))^2$$

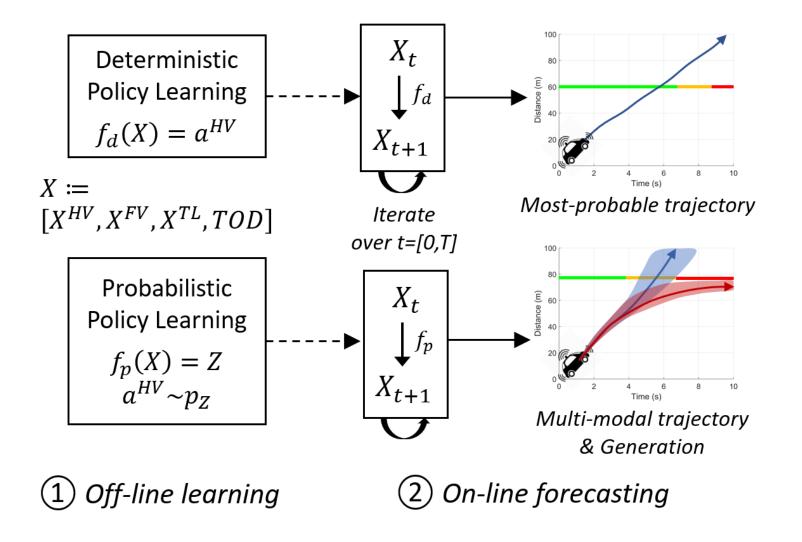
Probabilistic Policy (f_p) Learning: RNN-MDN



MDN captures competing policies And allows probabilistic interpretation

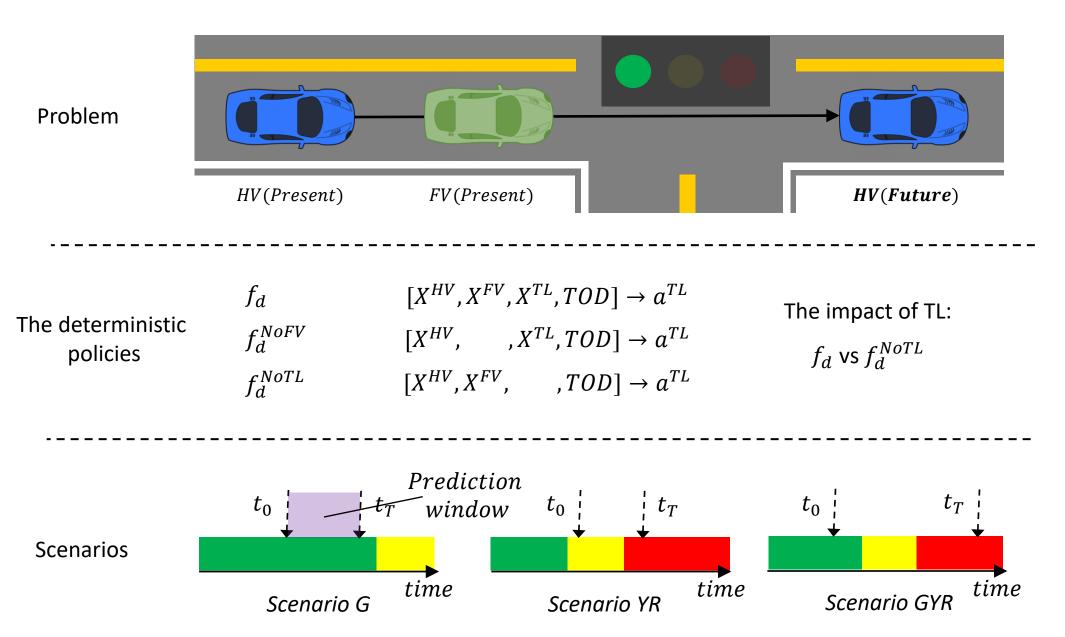
$$L_{p} := \sum_{t=1}^{T} -log(p(a_{t}^{HV} | X_{t-\tau:t}^{HV}, C_{t}; Z_{t}))$$

Prediction framework



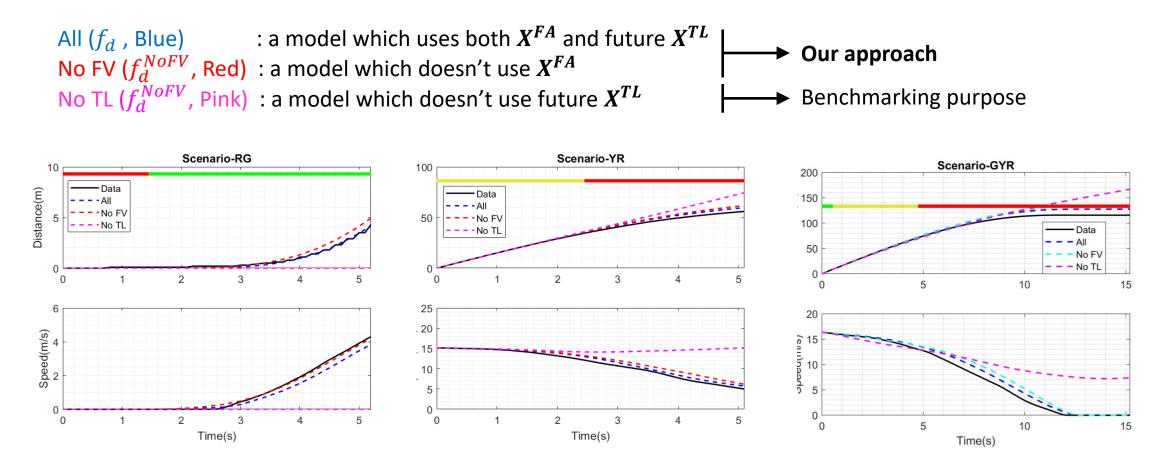
Autoregressive prediction using the learned policies to obtain the roll-outs

Qualitative evaluation



Qualitative evaluation with 3 sample episodes: TL vs NoTL

Given ground-truth (Black) trajectories, the trajectory forecasts from the following 3 models are compared:



Our models (blue and red) produce more accurate predictions than the model (pink) that doesn't utilize future X^{TL} The results demonstrate how the utilization of the future X^{TL} can improve the predictions

Quantitative evaluation with 3111 test samples & ablation study

Models for the ablation study:

 $\begin{aligned} f_d & [X^{HV}, X^{FV}, X^{TL}, TOD] \to a^{TL} \\ f_d^{NoFV} & [X^{HV}, , , X^{TL}, TOD] \to a^{TL} \\ f_d^{NoTL} & [X^{HV}, X^{FV}, , , TOD] \to a^{TL} \\ f_d^{NoFVTL} & [X^{HV}, , , TOD] \to a^{TL} \end{aligned}$

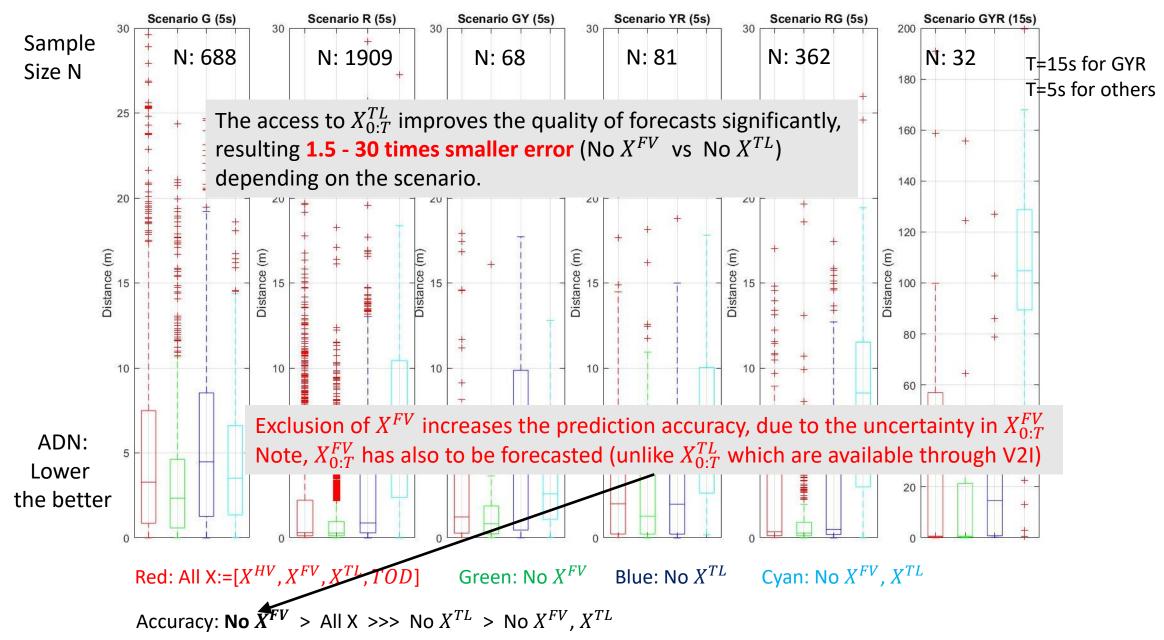
The impact of TL:

 f_d vs $f_d^{\it NoTL}$

Evaluation metrics:

Scenarios:

Quantitative evaluation with 3111 test samples & ablation study



Contribution

(1) Identification of a new problem where the existing forecasting methods might suffer(2) Demonstration of how the access to future TL states improve the predictions(3) Longitudinal trajectory forecasting algorithms which solve the problem

Conclusion

We identified the scenarios where the existing forecasting methods could perform poor and proposed a novel solution to this problem that leverages the future TL states.

Due to the dataset availability, interactions with rear & side cars were not considered and no perception data (e.g., lidar, radar) was used.

Nevertheless, we believe that the proposed solution makes a step forward towards more accurate modeling and trajectory forecasting of human-driven vehicles.

Thank You