

Uber ATG

Shivam Gautam, Gregory P. Meyer, Carlos Vallespi-Gonzalez and Brian C. Becker

Object Tracking

Typical Urban Scene

Typical Urban Scene - Dense

Typical Urban Scene - Dense

How many actors? Pedestrian? Bike ?

Typical Urban Scene - Dense

2 Pedestrians, 1 Bike, Bike Actor not visible

Typical Urban Scene - Occlusions

*Not all occlusions are shown

Typical Urban Scene - Motion Diversity

Proposed Method

Learned Method: Uses an LSTM network for actor-level association and tracking.

Learned Method: Uses an LSTM network for actor-level association and tracking.

Real-Time : Runs under 5ms (CPU)/ 3ms (GPU) for 500 Actors.

Learned Method : Uses an LSTM network for actor-level association and tracking.

Real-Time : Runs under 5ms (CPU)/ 3ms (GPU) for 500 Actors.

Multi-Sensor : Associates cross-modality detections (Lidar, Camera) to a single tracked object.

Learned Method : Uses an LSTM network for actor-level association and tracking.

Real-Time : Runs under 5ms (CPU)/ 3ms (GPU) for 500 Actors.

Multi-Sensor : Associates cross-modality detections (Lidar, Camera) to a single tracked object.

Joint Association and Tracking: Jointly learns association and state estimation in a single model for peds/bikes/skateboarders.

• Association is hard : occlusions, dense crowds, varying motions and detector false positives or false negatives.

- Association is hard : occlusions, dense crowds, varying motions and detector false positives or false negatives.
- Association failures lead to **inaccurate state estimates**.

T=1

T=0

T=2

T=0 T=1

T=0 T=1 T=2 T=3

- Association is hard : occlusions, dense crowds, varying motions and detector false positives or false negatives.
- Association failures lead to **inaccurate state estimates**.
- **Cascading effects** on downstream predictions, planning.

- Association is hard : occlusions, dense crowds, varying motions and detector false positives or false negatives.
- Association failures lead to **inaccurate state estimates**.
- **Cascading effects** on downstream predictions, planning.
- Mis-associations break single-source assumptions in probabilistic filtering based methods.

- Association is hard : occlusions, dense crowds, varying motions and detector false positives or false negatives.
- Association failures lead to **inaccurate state estimates**.
- **Cascading effects** on downstream predictions, planning.
- Mis-associations break single-source assumptions in probabilistic filtering based methods.
- Multiple Detectors: Multiple False positives present making associations hard.

- Association is hard : occlusions, dense crowds, varying motions and detector false positives or false negatives.
- Association failures lead to **inaccurate state estimates**.
- Cascading effects on downstream predictions, planning.
- Mis-associations break single-source assumptions in probabilistic filtering based methods.
- Multiple Detectors: Multiple False positives present making associations hard.
- Joint Tracking of VRUs: Need robust association to account for different motion models across pedestrians, bikes.

Previous Work

1. State Estimation and Tracking

- a. Filter-based tracking methods utilizing EKF/UKF are most common.
- b. IMM Interacting Multiple Models utilizes multiple filters with unique motion models.

Previous Work

1. State Estimation and Tracking

- a. Filter-based tracking methods utilizing EKF/UKF are most common.
- b. IMM Interacting Multiple Models utilizes multiple filters with unique motion models.

2. Classical Association Methods:

- a. **IoU score**: Thresholding on amount of overlap.
- b. **L2 score**: Thresholding on euclidean distance between observed detection and predicted position.
- C. Mahalanobis score: Covariance weighted distance between detection and object.

Previous Work

1. State Estimation and Tracking

- a. Filter-based tracking methods utilizing EKF/UKF are most common.
- b. IMM Interacting Multiple Models utilizes multiple filters with unique motion models.

2. Classical Association Methods:

- a. **IoU score**: Thresholding on amount of overlap.
- b. **L2 score**: Thresholding on euclidean distance between observed detection and predicted position.
- C. Mahalanobis score: Covariance weighted distance between detection and object.

3. Other Learned Methods:

- a. Most learned methods focus on 2D tracking in Image space.
- b. Previous RNN Based methods require fixed number of tracks that are known beforehand.
- c. 3D Based Learned methods:
 - i. Employ expensive feature extraction networks to perform association in 3D.
 - ii. Are not multi-model in terms of detections from different sources.
 - iii. Do not jointly learn association and tracking.

Model Details

Model Overview

Model Architecture

Association

State Estimate

Association

- a. **p**_{score} : Probability that the current detection-object pair is a true association.
- b. $\mathbf{y}_{\mathbf{score}}$: Learned score quantifying how good the association is.

Association

State Estimate

Association

- a. **p**_{score} : Probability that the current detection-object pair is a true association.
- b. **y**_{score} : Learned score quantifying how good the association is.

Why Break it down this way:

- 1. **Easy to remove highly unlikely associations**: All matches below a certain probability can be removed.
- 2. **Removes the need for arbitrary thresholds on scores**: How do you threshold a score that works for peds, bikes in all scenarios?
- 3. Allows in **identifying multiple false positives** on the same detection.

Association

State Estimate

Association

- a. **p**_{score} : Probability that the current detection-object pair is a true association.
- b. $\mathbf{y}_{\mathbf{score}}$: Learned score quantifying how good the association is.

State Estimate

- a. $[x_t, y_t, VX_t, VY_t]$: Position and velocity in cartesian coordinates.
- b. $[\sigma_{xt}, \sigma_{yt}, \sigma_{vxt}, \sigma_{vyt}]$: Corresponding uncertainty.

Association

State Estimate

Model Loss

$$\ell_{total} = \ell_{assoc} + w_{state} \cdot \ell_{state},$$

Association

$$\ell_{assoc} = \ell_{prob} + w_{score} \cdot \ell_{score},$$

- a. Cross Entropy loss on probability
- b. L2 Loss on Score

State Estimate

$$\ell_{state} = \sum_{i} \left(rac{\left(s_{t,i} - s_{t,i}^*
ight)^2}{2\sigma_{t,i}^2} + \log \sigma_{t,i}
ight) \qquad egin{array}{c} s_t = \left[x_t, y_t, v_t^x, v_t^y
ight] \ \sigma_t = \left[\sigma_{x_t}, \sigma_{y_t}, \sigma_{v_t^x}, \sigma_{v_t^y}
ight] \end{array}$$

Results

Results

TABLE I

COMPARISON OF TRACKING METHODS ACROSS MULTIPLE SENSOR MODALITIES

Sensing	Method	MOTA ↑	MOTVO \downarrow		MOTVE \downarrow		ED	EN I	IDSW	MOTE	МТ ↑	MI I	Erog
Modalities	Wiethod		Ped	Bike	Ped	Bike	II ↓	111	1D244 7	MOII 4		MIL 4	Tiag ↓
LiDAR	IoU-based Association	67.6486	3.572	2.377	0.170	0.287	394840	510918	44855	0.3527	0.389	0.164	39385
	L2 Association	67.9379	3.204	2.373	0.158	0.281	391298	508561	42092	0.3519	0.390	0.163	38850
	Mahalanobis Association	68.4670	2.956	2.041	0.157	0.271	370060	516321	37788	0.3466	0.386	0.165	40026
	SDVTracker (Ours)	68.9816	2.199	1.633	0.131	0.248	362560	510970	35433	0.3475	0.391	0.162	38438

• New Proposed Metrics : MOTVE & MOTVO

• Significant Improvements

- **MOTVE**: 16% improvement over next best method.
- **ID Switches**: 6.23% improvement over next best method.
- Lower MOTP ≠ Lower Velocity Error
 - Trajectory Prediction more reliant on future states!

Results

TABLE I

COMPARISON OF TRACKING METHODS ACROSS MULTIPLE SENSOR MODALITIES

Sensing	Method N	MOTA \uparrow	MOTVO \downarrow		MOTVE \downarrow		ED	ENI	IDSW	MOTE	МТ А	MI I	Frag
Modalities			Ped	Bike	Ped	Bike	II ↓	1.14 4	шъм †	MOII 4		MIL 4	Tiag ↓
LiDAR	IoU-based Association	66.5809	4.236	2.549	0.192	0.295	416723	503642	51731	0.3586	0.384	0.167	43417
	L2 Association	68.1027	3.303	2.334	0.162	0.294	386467	497147	43991	0.3554	0.388	0.163	40572
+	Mahalanobis Association	68.6031	3.056	2.118	0.160	0.287	366913	504202	39521	0.3498	0.385	0.165	41251
Camera	SDVTracker (Ours)	69.4405	2.204	1.827	0.133	0.268	346651	504744	33118	0.3485	0.388	0.162	40008

Better at incorporating multiple sensor modalities

- **MOTVO**: 17% improvement over next best method.
- **ID Switches**: 16% improvement over next best method.

Ablation Studies

TABLE II

EFFECT OF LEARNING JOINT TRACKING AND ASSOCIATION

Network	IMM	Learning State	MOTA ↑	MOTVO \downarrow	MOTVE \downarrow	IDSW \downarrow
MLP	1		69.2221	2.448	0.1446	37594
MLP	1	1	69.3863	2.385	0.1413	34698
LSTM	1		69.2877	2.428	0.1419	35862
LSTM		1	69.3971	2.240	0.1528	34031
LSTM	1	1	69.4405	2.292	0.1393	33118

- Jointly learning association and state targets improves performance.
- Recurrent network outperforms MLP.
- Adding multiple model filter after LSTM improves performance slightly.

Ablation on Joint Learning and Targets

TABLE III

EFFECT OF LEARNING PROBABILITY AND SCORE

Association Output	MOTA \uparrow	MOTVO \downarrow	MOTVE \downarrow	IDSW \downarrow
Probability Only	69.1837	2.544	0.1466	35419
Score Only	69.3618	2.551	0.1448	39461
Probability and Score	69.4405	2.292	0.1393	33118

• Learning Probability and Score is better than learning either one.

Impact of Pedestrian Density

Impact of Pedestrian Density

Summary

- 1. Discussed the **challenges for object association and tracking** in urban scenarios.
- 2. **Presented SDVTracker**, a learned method for object detection and tracking for autonomous driving.
 - a. Joint Association and Tracking within single model.
 - b. Multi-Sensor (LiDAR/ Camera) tracking.
 - c. **Novel targets** for learning association.
- 3. Demonstrated the effectiveness of the model in **crowded scenarios**.
- 4. Justified real-time performance on both CPU and GPU.
- 5. **Future**:
 - a. Experiments with increased capacity.
 - b. Multi-hypothesis tracking
 - c. Feature Descriptors from Detectors.

Thank You!

Questions: Shivam Gautam Autonomy Engineer, Uber ATG sgautam@uber.com