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SDVTracker

Real-Time Multi-Sensor Association and
Tracking for Self-Driving Vehicles

Uber ATG

Shivam Gautam, Gregory P. Meyer, Carlos Vallespi-Gonzalez and Brian C. Becker
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Why Robust
Association and Tracking?



Typical Urban Scene
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Typical Urban Scene - Dense

How many actors? Pedestrian? Bike ?




Typical Urban Scene - Dense

2 Pedestrians, 1 Bike, Bike Actor not visible




Typical Urban Scene - Occlusions

*Not all occlusions are shown



Typical Urban Scene - Motion Diversity




Proposed Method
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SDVTracker: Real-Time Multi-Sensor Association and
Tracking for Self-Driving Vehicles

Learned Method : Uses an LSTM network for actor-level association and tracking.

Real-Time : Runs under 5ms (CPU)/ 3ms (GPU) for 500 Actors.

Multi-Sensor : Associates cross-modality detections (Lidar, Camera) to a single
tracked object.

Joint Association and Tracking : Jointly learns association and state
estimation in a single model for peds/bikes/skateboarders.
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*  Multiple Detectors: Multiple False positives present making associations hard.



Why robust Association and Tracking?

Association is hard : occlusions, dense crowds, varying motions and detector false positives or false
negatives.

Association failures lead to inaccurate state estimates.

Cascading effects on downstream predictions, planning.




SDVTracker: Real-Time Multi-Sensor Association and Tracking for
Self-Driving Vehicles
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Previous Work

1. State Estimation and Tracking
a. Filter-based tracking methods utilizing EKF/UKF are most common.
b. IMM - Interacting Multiple Models utilizes multiple filters with unique motion
models.

2. Classical Association Methods:
a. loU score: Thresholding on amount of overlap.
b. L2 score: Thresholding on euclidean distance between observed detection and
predicted position.
c. Mahalanobis score: Covariance weighted distance between detection and object.

3. Other Learned Methods:
a. Most learned methods focus on 2D tracking in Image space.
b. Previous RNN Based methods require fixed number of tracks that are known
beforehand.

c. 3D Based Learned methods:
I.  Employ expensive feature extraction networks to perform association in 3D.
ii.  Are not multi-model in terms of detections from different sources.
lii. Do not jointly learn association and tracking.
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Model Details



Model Overview
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Model Architecture
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Model Targets

Association
a.  Pgcore - Probability that the current detection-object pair is a true
association. Association
b. Yecore - Learned score quantifying how good the association is. Probability Score
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Model Targets

Association
a.  Pgcore - Probability that the current detection-object pair is a true
association.
b. Yecore - Learned score quantifying how good the association is.

Why Break it down this way:

1. Easy to remove highly unlikely associations: All matches below a
certain probability can be removed.

2. Removes the need for arbitrary thresholds on scores: How do you
threshold a score that works for peds, bikes in all scenarios?

3. Allows in identifying multiple false positives on the same detection.
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Model Targets

Association
a.  Pgcore - Probability that the current detection-object pair is a true
association. Association
b. Yecore - Learned score quantifying how good the association is. Probability Score
> Pscore Yscore
State Estimate - - y
" L . . Tt | Yt | V¢ | Ut
a. [xt, Yp VX, Vyt] . Position and velocity in cartesian coordinates. >
Oz | Oye |OvF | Tp¥

b. [, 0,0

o Fyp Oty o‘vyt] : Corresponding uncertainty.

State Estimate




Model Loss

etotal — gassoc + Wstate ° estatea

Association

eassoc — Lprob + Wscore * escore,

a. Cross Entropy loss on probability
b. L2 Loss on Score

State Estimate

2
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state — ) + log Ot,i

ZJM
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8t = [Tt, yt, v¥, 0]

Ot = [O':Et,o'ytao"uf)o-'uf]
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Results

TABLE 1
COMPARISON OF TRACKING METHODS ACROSS MULTIPLE SENSOR MODALITIES

Sensing

MOTVO | MOTVE |

i 8 Method MOTA T o "Bt Ped  Bie @BV FN| [IDSW| MOTP, MTt ML} Fragl
ToU-based Association 67.6486 3.572 2.377 0.170 0.287 394840 510918 44855  0.3527 0.389 0.164 39385
LiDAR | L2 Association 67.9379 3.204 2373 0.158 0.281 391298 508561 42092  0.3519 0.390 0.163 38850
Mahalanobis Association | 68.4670 2.956 2.041 0.157 0.271 370060 516321 37788 03466  0.386 0.165 40026
SDVTracker (Ours) | 68.9816 | [ 2.199] | 1.633] | 0.131] [0.248 | [362560| 510970 [35433 0.3475 [0.391 | [ 0.162] [38438 |
e New Proposed Metrics : MOTVE & MOTVO
e Significant Improvements
o  MOTVE: 16% improvement over next best method.
o  ID Switches: 6.23% improvement over next best method.
e Lower MOTP # Lower Velocity Error

o  Trajectory Prediction more reliant on future states!



Results

TABLE I

COMPARISON OF TRACKING METHODS ACROSS MULTIPLE SENSOR MODALITIES

Sensing

MOTVO | MOTVE |

Modalities Method MOTAT 2 Bike Psd Biks v Nk IDOWw MOTBs MUY My Fegd
LipAR | 1oU-based Association | 66.5809 4.236 2549 0192 0295 416723 503642 51731  0.3586 0.384 0.167 43417
: L2 Association 68.1027 3.303 2.334 0.162 0.294 386467 497147 43991  0.3554 0388 0.163 40572
Camora | Mahalanobis Association | 68.6031 3.056 2118 0160 0.287 366913 504202 39521 03498 ~ 0.385 0.165 41251
SDVTracker (Ours) 69.4405] [2.204] [1.827] [0.133] [[0268] [346651 504744 [33118] [0.3485] [0.388] [0.162] [40008

Better at incorporating multiple sensor modalities

MOTVO: 17% improvement over next best method.

ID Switches: 16% improvement over next best method.



Ablation Studies

TABLE II

EFFECT OF LEARNING JOINT TRACKING AND ASSOCIATION

Network | IMM | Learning State | MOTA ¥+ MOTVO| MOTVE | IDSW |
MLP v 69.2221 2.448 0.1446 37594
MLP v v 69.3863 2.385 0.1413 34698
LSTM v 69.2877 2.428 0.1419 35862
LSTM v 69.3971 2.240 0.1528 34031

| LSTM Y v 69.4405 2.292 0.1393 33118 |

e Jointly learning association and state targets improves performance.

e Recurrent network outperforms MLP.

e Adding multiple model filter after LSTM improves performance slightly.



Ablation on Joint Learning and Targets

TABLE III
EFFECT OF LEARNING PROBABILITY AND SCORE

Association Output MOTA + MOTVO ]| MOTVE| IDSW |
Probability Only 69.1837 2.544 0.1466 35419
Score Only 69.3618 2.561 0.1448 39461
Probability and Score 69.4405 2.292 0.1393 33118

® Learning Probability and Score is better than learning either one.



Impact of Pedestrian Density
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Impact of Pedestrian Density
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https://docs.google.com/file/d/1ujzH_EZ36vUbgxVuTGea4-nxBeodGJyj/preview

Summary

1. Discussed the challenges for object association and tracking in urban scenarios.

2. Presented SDVTracker, a learned method for object detection and tracking for
autonomous driving.
a. Joint Association and Tracking within single model.
b.  Multi-Sensor (LiDAR/ Camera) tracking.
c. Novel targets for learning association.

3. Demonstrated the effectiveness of the model in crowded scenarios.
4. Justified real-time performance on both CPU and GPU.

5. Future:
a. Experiments with increased capacity.
b.  Multi-hypothesis tracking
c. Feature Descriptors from Detectors.



Thank Youl!

Questions: Shivam Gautam
Autonomy Engineer, Uber ATG
sgautam@uber.com



