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Deep Learning is Everywhere

B Deep Neural Networks (DNNs) have become the most popular approach to developing
Artificial Intelligence (Al) solutions in many domains.

Autonomous Driving Medical Diagnosis Predictive Maintenance

B All these applications are safety-critical

B Thus, there are high requirements regarding safety, robustness and security
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Deep Learning Limitation

B Neural networks cannot look beyond their horizon:
“Neural networks don’t know, when they don’t know!”

B If you have a DNN that learns to distinguish only two classes, the output probability will sum up to
one for both classes. The network must return one of these classes.
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B Therefore, neural networks produce overconfident predictions for out-of-distribution data.

B Problem in safety-critical systems: confidence of a network classifier is not reliable for triggering
human intervention and/or transferring into a safe state of the system

B Solution: Uncertainty in Neural Networks
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Semantic Segmentation 1)

B Scene understanding is an essential prerequisite for autonomous vehicles. ‘
Decision Making
B Semantic segmentation helps gaining a rich understanding of the scene by predicting a
meaningful class label for each individual sensory data point.
B Safety-critical systems, such as self-driving vehicles, however, require not only highly
accurate but also reliable predictions with a consistent measure of uncertainty.

Uncertainty Measure
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3D Semantic Segmentation Methods

Pros

v~ Extremely accurate depth information

v~ 360 degrees of visibility (Increased range)
Cons

X Sparse and unstructured data

X Non-uniform sampling

X Scanning frequency ~ 10 Hz

X Expensive ~ 100.000 $

E LiDAR
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3D Semantic Segmentation Methods
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Reported Runtime (msec)
Mean loU versus runtime plot for the state-of-the-art 3D point cloud semantic segmentation networks on the
Semantic-KITTI dataset. Inside parentheses are given the total number of network parameters in Millions.
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3D Semantic Segmentation Methods
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Reported Runtime (msec)
Mean loU versus runtime plot for the state-of-the-art 3D point cloud semantic segmentation networks on the
Semantic-KITTI dataset. Inside parentheses are given the total number of network parameters in Millions.

B There is a clear split between the projection-based and point-wise approaches in terms of accuracy, runtime
and memory consumption.

B Both point-wise and projection-based approaches in the literature lack uncertainty measures, i.e.
confidence scores, for their predictions.

Goal: We aim at achieving a fine-grained semantic segmentation of 3D point clouds
with reliable confidence estimates in real-time to reinforce the concept of safe autonomy
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SalsaNext: The Original SalsaNet Model
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SalsaNet

B The original SalsaNet model has an encoder-decoder
architecture with a bottleneck compression rate of 16.

B The SalsaNet encoder unit consists of a series of ResNet

blocks and the decoder part upsamples and fuses features
extracted in the residual blocks.

B To further exploit descriptive spatial cues, a stack of
convolution is inserted after the skip connection.

Aksoy et al., “Salsanet: Fast road and vehicle segmentation in lidar point clouds for autonomous
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SalsaNext: Input

N
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Raw 3D LiDAR Point Cloud B Network Input: We project the 3D LiDAR
point cloud onto a spherical surface to
generate the Range View image:

g — _ A ; g (u) :< %[1 — arctan(y, x)r~w >
" v \[1 = (aresin(z ™) + fawn)f TR/

where h and w denote the height and width of the
projected image, r is the range of each point as

r=,x2+y2+z2 and f defines the sensor

vertical field of view as f = | faown| + |fup|-

Range View Image . o
. B Range View image dimension is [h x w x 5]
where channels are x,y, z, intensity, range.

Cortinhal et al., “Salsanext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds HALMSTAD
for Autonomous Driving,” in arXiv, 2020. UNIVERSITY




SalsaNext: Context Module
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The layer elements k, d, and bn represent the kernel size, dilation rate and batch normalization, respectively.

B Global Multi-scale Context Module: To aggregate the context information in different regions, we place a
residually connected dilated convolution stack that fuses a small receptive field (7x7) with a larger one (3x3
kernels with dilation rates=(1,2)) by applying element-wise addition.

B Starting with relatively small 7x1 kernels helps aggregate channel-wise local spatial features while having 3x3
kernels with different dilation rates captures various complex correlations between different segment classes.

B This helps focusing on more contextual information alongside with more detailed global spatial information

via pyramid pooling (similar to Atrous Spatial Pyramid Pooling in DeepLabv3).
Cortinhal et al., “Salsanext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds HALMSTAD
for Autonomous Driving,” in arXiv, 2020. UNIVERSITY



SalsaNext: Encoder
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The layer elements k, d, and bn represent the kernel size, dilation rate and batch normalization, respectively.

B In the encoder, we replace the ResNet blocks in the original SalsaNet encoder with a novel combination of a set of
dilated convolutions having effective receptive fields of 3, 5 and 7 (see Block I).

B We further concatenate each dilated convolution output and apply a 1x71 convolution followed by a residual connection
to exploit more information from the fused features coming from various depths in the receptive field.

B Each of these new residual dilated convolution blocks (i.e. Block 1) is followed by dropout and pooling layers as
depicted in Block II.

Cortinhal et al., “Salsanext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds HALMSTAD
— for Autonomous Driving,” in arXiv, 2020. UNIVERSITY



SalsaNext: Decoder
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The layer elements k, d, and bn represent the kernel size, dilation rate and batch normalization, respectively.

B In the decoder, we replace the original transpose convolutions, which are computationally expensive in terms of
number of parameters, with pixel-shuffle layer (Block IIl) which directly leverages on the feature maps to upsample
the input with less computation.

B Pixel-shuffle is a differentiable process which rearranges elements from depth dimension to spatial domain in a
deterministic way.

Cortinhal et al., “Salsanext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds HALMSTAD
for Autonomous Driving,” in arXiv, 2020. UNIVERSITY




SalsaNext: Decoder
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The layer elements k, d, and bn represent the kernel size, dilation rate and batch normalization, respectively.

B Consequently, shuffling pixels in the decoder leads to more accurate image reconstruction as it introduces fewer
checkerboard artifacts with a vastly reduced number of parameters.

B We additionally double the filters in the decoder side and concatenate the pixel-shuffle outputs with the skip
connection (Block 1V) before feeding them to the dilated convolutional blocks (Block V) in the decoder.

_ Cortinhal et al., “Salsanext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds HALMSTAD
hh.se for Autonomous Driving,” in arXiv, 2020. UNIVERSITY




SalsaNext: Regularization
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The layer elements k, d, and bn represent the kernel size, dilation rate and batch normalization, respectively.

B Central dropout treatment: To boost the roles of very basic features (e.g. edges and curves) in the segmentation
process, we applied central dropout treatment by omitting the first and last network layers in the dropout process.

B Average pooling: To have a lighter model, we also employed average pooling for down-sampling instead of having
stride convolutions in the encoder.

B Post-processing: We finally apply a kNN-based post-processing method to handle the information loss due to
discretization errors when the network output, i.e. an RV image is re-projected back to the original 3D space.

Cortinhal et al., “Salsanext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds HALMSTAD
h.se for Autonomous Driving,” in arXiv, 2020. UNIVERSITY



SalsaNext: Loss Function

512 x32x 64
128 x 8 x 256

12048 x64x 20

1256 x16x 128
Logits

!512 Xx32x64
!1024 X 64 x 32

2048 x 64 x 32

12048 x64x5
64 x4 X256
64 x4 X256

5D Range-View Image

:----'---:----—. . A . . Skip
. = . Connection
Q
e = c)] Cc .
S| S s § alsle Element-wise
N + = b I D @ Addition
S1s = L S EIE
o] B: < x gle|s +(©)» Concatenation
[=%

The layer elements k, d, and bn represent the kernel size, dilation rate and batch normalization, respectively.

B To cope with the imbalanced class problem, we L= Loy + Lis
add more value to the underrepresented classes by

weighting the softmax cross-entropy loss (L.c) Luce(y,9) = = X; aip(ys)log(p(is))  with  a; = 1/\/fi
with the inverse square root of class frequency.

B We further compute the Lovasz-Softmax loss (L;s) L, = 1 Zﬂ(m(c)) and mi(c) = { 1—zi(c) if ¢ = yi(c)
to directly optimize the Jaccard index. Cl & ' z;(c) otherwise

Cortinhal et al., “Salsanext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds HALMSTAD
for Autonomous Driving,” in arXiv, 2020. UNIVERSITY



SalsaNext: Uncertainty Estimation
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The layer elements k, d, and bn represent the kernel size, dilation rate and batch normalization, respectively.

B Bayesian treatment for the uncertainty estimation

Assumed Density Filtering

)| Odata

0 o
hoise Aleatoric (Data) Uncertainty J

Ototal

—[ Epistemic (Model) Uncertainty
Monte-Carlo Dropout

Cortinhal et al., “Salsanext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds HALMSTAD
for Autonomous Driving,” in arXiv, 2020. UNIVERSITY
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SalsaNext: Uncertainty Estimation

B The predictive uncertainty comes from two sources:

B Aleatoric (Data) Uncertainty

B is measurement-based which arises from the sensor noise, data representation and label noise, etc.
deals with the potential intrinsic randomness of the sensor, i.e. real data generating process.
is also called data or irreducible uncertainty since it might not be reduced by having more data.

e.g. may occur on segment boundaries or distant objects due to noisy sensor readings which are
inherent in sensors.

B Epistemic (Model) Uncertainty

B is model-based which arises from the uncertainty of model parameters
reflects the limitation of the model on describing the biased training data
can be reduced by enlarging the dataset
results from a lack of training data in certain areas of the input domain

e.g. a rare sample should have higher model uncertainty than a sample which appears more often in
the training data (imbalanced class problem).

10.0
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Cortinhal et al., “Salsanext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds HALMSTAD
for Autonomous Driving,” in arXiv, 2020. UNIVERSITY




SalsaNext: Uncertainty Estimation

B To compute the Aleatoric (Data) Uncertainty:

B we make use of prior information about the data, e.g. sensor noise.

B we forward-propagate sensor noise (i.e. the input uncertainty) through the @ A
network by using Assumed Density Filtering (ADF) which replaces each
network activation, including input and output, by probability distributions

B ADF is a method for approximating the true posterior with a tractable parametric
distribution in Bayesian networks. @ A
B When the posterior computed by Bayes’ rule does not belong to the original
parametric family, it can be approximated by a distribution belonging to the

parametric family. @ . .
B In ADF, the posterior is projected onto the closest distribution in the family of M
ADF

interest by minimizing the reverse KL divergence between the true posterior Deterministic
and approximate posterior.

B In ADF, we choose a distribution that is easy for us to work with and project
the true posterior after each measurement update onto this distribution family.

J. Gast and S. Roth, “Lightweight
probabilistic deep networks,” CVPR, 2018

B In ADF network, each intermediate layer i, also outputs a distribution represented by some parameters v rather
than a point estimate z(®.

B Aforward pass in this ADF-based modified neural network generates output predictions u with their respective
aleatoric uncertainties o,

B ADF basically approximates the distribution of activation functions, instead of just weights, which leads to a
simple and effective method with a smaller computational footprint.

|
Cortinhal et al., “Salsanext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds ‘ HALMSTAD
.Se

for Autonomous Driving,” in arXiv, 2020. ! UN |VE RSITY




SalsaNext: Uncertainty Estimation w*

B To compute the Epistemic (Model) Uncertainty, we /ﬁ.
employ Monte Carlo sampling during inference, os " oy \7 13

i.e. use dropout to approximate the intractable @ @ @
weight posterior. % 2
0. 5 N A -

B We run N trials and compute the average of the
variance of the N predicted outputs:

B Attesttime, a weight sample w, is drawn

) ek . In a standard deterministic NN, each In a BNN, each weight is assigned
from the posterior distribution of the weights, weight has a fixed value (w*) as provided  a posterior distribution,
and the resulting network is used to generate by classical backpropagation parameterized by theta (q8(w)).
a prediction p(y|x,w,) for an example x.
B The same can be done for samples w, and
w3, yielding predictions p(y|x,w-) and p(}}lx)

p(ylx,w;), respectively. Average
B The three networks are treated as an

ensemble and their predictions averaged. POylx,w1) PO W) l p(YIx, W)

B Foran already trained network, the optimal ,g%\ ) XY& & " /.'@\\
dropout rate p is estimated by applying a grid search O} % .\”) 2 d ? \O é! \'O
in the range [0; 1]. This means that the optimal "'@‘ @% /@2 - @(‘ ':’b ‘@ ' @g.@i /”3: '
dropout rates p will minimize \23/7'\ | '\(l)/\/@' %

_ 1 1 . Xy Xy Xy
p = arg rrgnz 5108(0%0t) + 5—= " = Vprea(P))”

deD tot Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in ICML, 2016.

B This method does not require any change in the
optimization or |eaming process, thus, can be directly A. Loquercio, M. Segu, and D. Scaramuzza, “A general framework for
applied to an already trained network uncertainty estimation in deep learning,” IEEE RA-L, 2020

Cortinhal et al., “Salsanext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds HALMSTAD
hh.se for Autonomous Driving,” in arXiv, 2020. UNIVERSITY



Quantitative Results on the Semantic-KITTI Test-set

3 ¢ : 5 % ¢ LT T B s = [
- = 4 3 - = = E b} = 5] & 8 K] = _3
Approach Size g 2 g E k> 2 2 g g = -g k> B 8 2 = E 2 g z
Pointnet [15] 46.3 1.3 0.3 0.1 0.8 0.2 0.2 00 616 158 357 1.4 414 129 310 46 176 24 37 14.6
Pointnet++ [16] 53.7 1.9 0.2 0.9 0.2 0.9 1.0 00 720 187 418 56 623 169 465 138 300 6.0 8.9 20.1
E’ SPGraph [17] 50K pt 68:3 0.9 45 0.9 0.8 1.0 6.0 00 495 1.7 242 03 682 225 592 272 17.0 183 105 20.0
7 | SPLATNet [22] pis 66.6 0.0 0.0 0.0 0.0 0.0 0.0 00 704 08 415 00 687 278 723 359 358 138 00 22.8
§ TangentConv [37] 86.8 1.3 127 116 102 171 202 05 829 152 61.7 9.0 828 442 755 425 555 302 222 35.9
< | RandLa-Net [38] 942 260 258 40.1 389 492 482 72 907 603 737 389 869 563 814 613 668 492 477 53.9
LatticeNet [23] 929 166 222 266 214 356 430 460 900 594 741 220 882 588 817 636 631 519 484 529
SqueezeSeg [6] 68.8 160 4.1 33 3.6 129 131 09 854 269 543 45 574 200 600 243 537 175 245 290.5
SqueezeSeg-CRF [6] 68.3 181 5.1 4.1 4.8 165 173 1.2 849 284 547 46 615 292 596 255 547 112 363 30.8
SqueezeSegV2 [10] 8§1.8 185 179 134 140 201 251 39 886 458 67.6 17.7 737 41.1 718 358 602 202 363 39.7
R | SqueezeSegV2-CRF [10] | 64x2048 | 827 21.0 226 145 159 202 243 29 885 424 655 187 738 410 685 369 589 129 410 39.6
3 RangeNet21 [7] pixels 854 262 265 186 156 318 336 40 914 570 740 264 819 523 776 484 636 360 50.0 474
'2 RangeNet53 [7] 864 245 327 255 226 362 336 47 918 648 746 279 841 550 783 501 640 389 522 | 499
= RangeNet53++ [7] 914 257 344 257 230 383 388 48 918 650 752 278 874 586 805 551 646 479 559 522
_E 3D-MiniNet [27] 90.5 423 421 285 294 478 441 145 916 642 745 254 894 608 828 608 667 480 56.6 55.8
g SqueezeSegV3 [24] 925 387 365 296 330 456 462 201 917 634 748 264 890 594 820 587 654 496 589 55.9 )
(=)
SalsaNet [1] 64x2048 | 87.5 262 246 240 175 332 311 8.4 80.7 517 707 197 828 480 73.0 400 617 313 419 454 } <
SalsaNext [Ours] pixels 91.9 483 386 389 319 602 3590 194 917 637 758 291 902 642 818 636 665 543 621 59.5 ©

B SalsaNext considerably outperforms the others by leading to the highest mean loU score (59.5%) which is +3.6% over
the previous state-of-the-art method.

B In contrast to the original SalsaNet, we obtain more than 14% improvement in the accuracy.

B When it comes to the performance of each individual category, SalsaNext performs the best in 9 out of 19 categories.
In most of these remaining 10 categories (e.g. road, vegetation, and terrain) SalsaNext has a comparable performance
with the other approaches.
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Quantitative Results on the Semantic-KITTI Test-set
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Approach Size g 2 g E k> 2 2 g g = -g k> B 8 2 = 2 2 g z
Pointnet [15] 46.3 1.3 0.3 0.1 0.8 0.2 0.2 00 616 158 357 1.4 414 129 31.0 46 176 24 37 14.6
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< | RandLa-Net [38] 942 260 258 40.1 389 492 482 72 907 603 737 389 869 563 814 613 668 492 477 539
LatticeNet [23] 929 166 222 266 214 356 430 460 900 594 741 220 882 588 817 636 631 519 484 529
SqueezeSeg [6] 688 160 4.1 33 3.6 129 13.1 09 854 269 543 45 574 290 600 243 537 175 245 20.5
SqueezeSeg-CRF [6] 68.3 181 5.1 4.1 4.8 165 173 1.2 849 284 547 46 615 292 596 255 547 112 363 30.8
SqueezeSegV2 [10] 8§1.8 185 179 134 140 201 251 39 886 458 67.6 17.7 737 41.1 718 358 602 202 363 39.7
R | SqueezeSegV2-CRF [10] | 64x2048 | 827 21.0 226 145 159 202 243 29 885 424 655 187 738 410 685 369 589 129 410 39.6
< RangeNet21 [7] pixels 854 262 265 186 156 318 336 40 914 570 740 264 819 523 776 484 636 360 500 474
‘2 RangeNet53 [7] 864 245 327 255 226 362 336 47 918 648 746 279 841 550 783 501 640 389 522 49.9
-2 RangeNet53++ [7] 914 257 344 257 230 383 388 48 918 650 752 278 874 586 805 551 646 479 559 52.2
§ 3D-MiniNet [27] 90.5 423 421 285 294 478 441 145 916 642 745 254 894 608 828 608 667 480 56.6 55.8
E SqueezeSegV3 [24] 925 387 365 296 330 456 462 201 917 634 748 264 890 594 820 587 654 496 589 55.9
SalsaNet [1] 64x2048 | 87.5 262 246 240 175 332 311 8.4 89.7 517 707 197 828 480 73.0 40.0 61.7 313 419 454
SalsaNext [Ours] pixels 919 483 386 389 319 602 59.0 194 917 637 758 291 902 642 818 63.6 665 543 621 59.5
B Quantitative relationship between the epistemic rogd&’eg‘fézu‘;ﬁ‘k
uncertainty and the number of points that each . ° S fence
class has in the entire Semantic-KITTI test set. o 107 car  terrain arking
= building . @
S grunk
B Net i 2107 Cpol?] ther-vehicle
etwork becomes less certain about rare classes traffic.s other-ground  $thervel
represented by low number of points (e.g. . o e Sone Picycle
motorcyclist and motorcycle). 2 105 bicyclisty ~ gnotorcycle
>
2
B There also exists, to some degree, an inverse 10°4
correlation between the obtained uncertainty and motorcyclisg
the. segmentation accuracy, e.g. motorcyclist 20 20 60 80 100 120
which has the lowest loU score (19.4%). Mean Epistemic x10~*
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Ablation Study

The post processing step leads to a certain jump
(around 2%) in the accuracy.

Dilated convolution stack causes a peak in the model
parameters, which is vastly reduced after adding the
pixel-shuffle layers

Switching to the pixel-shuffle layers yields 1% more
accuracy while having 2.5M less parameters.

mean [oU mean IoU Number of
(w/o kKNN) (+kNN) Parameters FLOPs

SalsaNet [1]

+ context module
+ central dropout
+ average pooling
+ dilated convolution
+ Pixel-Shuffle
+ Lovdasz-Softmax 1oss

43.2 444 6.58M  51.60G
45.0 46.4 6.64M 69.20G
48.5 50.8 6.64M 69.20G
48.9 51.2 585M  66.78 G
50.6 523 925M 161.60 G
51.2 533 6.73M 125.68 G
56.4 59.9 6.73M 125.68 G

ABLATIVE ANALYSIS ON THE VALIDATION SET

Combining the weighted cross-entropy loss with Lovasz-Softmax leads to the highest increment in the accuracy, since
the Jaccard index which is the main metric to measure the segmentation accuracy is directly optimized.

Consequently, we achieve the highest accuracy score of 59.9% by having only 2.2% (i.e. 0.15M) extra parameters

compared to the original SalsaNet.

Runtime Evaluation

SalsaNext exhibits better performance compared to
RangeNet++ while having 7x less parameters.

SalsaNext can run at 24 Hz when the uncertainty
computation is excluded for a fair comparison with
deterministic models.

This speed is significantly faster than the sampling rate
of mainstream LiDAR sensors which is typically 10 Hz.

Processing Time (msec)

kNN  Total  Speed (fps) Parameters

RangeNet++ [7]
SalsaNet [1]
SalsaNext [Ours]

2.89  66.41 15 Hz 50 M
262 3840 26 Hz 6.58 M
265 4126 24 Hz 673 M

RUNTIME PERFORMANCE
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Qualitative Results on the Semantic-KITTI Test-set

3.

o

Sample qualitative results: At the bottom the range-view image of the network response is shown. Camera images on the right are only for

visualization purposes and have not been used in the training. The fop camera image shows the projected segments whereas the middle and
bottom images depict the projected epistemic and aleatoric uncertainties. The lighter the color is, the more uncertain the network becomes.

More info: https://arxiv.org/pdf/2003.03653.pdf
@ YouTube

https://youtu.be/MISalcD9ltU

O PyTorch https://github.com/TiagoCortinhal/SalsaNext

-
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Conclusion

B We presented a new uncertainty-aware semantic segmentation network, named SalsaNext.

B Our contributions lie in the following aspects that can process the full 360 LiDAR scan in real-time.
B SalsaNext builds up on the SalsaNet model and can achieve over 14% more accuracy.

B In contrast to previous methods, SalsaNext returns +3.6% better mloU score.

B Our network differs in that SalsaNext can also estimate both data and model-based uncertainty.
More info: https://arxiv.ora/pdf/2003.03653.pdf

O YouTube  hitps://voutu.be/MISalcDIItU

O PyTorch https://github.com/TiagoCortinhal/SalsaNext
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Questions & Comments

More info: https://arxiv.org/pdf/2003.03653.pdf

©YouTube  hitps://voutu.be/MISalcDIItU

O PyTorch https://github.com/TiagoCortinhal/SalsaNext
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