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Deep Learning is Everywhere
Deep Neural Networks (DNNs) have become the most popular approach to developing 
Artificial Intelligence (AI) solutions in many domains.

All these applications are safety-critical

Thus, there are high requirements regarding safety, robustness and security

Autonomous Driving Predictive MaintenanceMedical Diagnosis



Deep Learning Limitation
Neural networks cannot look beyond their horizon: 

“Neural networks don’t know, when they don’t know!”

If you have a DNN that learns to distinguish only two classes, the output probability will sum up to 
one for both classes. The network must return one of these classes. 

Therefore, neural networks produce overconfident predictions for out-of-distribution data.

Problem in safety-critical systems: confidence of a network classifier is not reliable for triggering 
human intervention and/or transferring into a safe state of the system

Solution: Uncertainty in Neural Networks

Out-of-distribution

In-distribution



Semantic Segmentation
Scene understanding is an essential prerequisite for autonomous vehicles. 

Semantic segmentation helps gaining a rich understanding of the scene by predicting a 
meaningful class label for each individual sensory data point.

Safety-critical systems, such as self-driving vehicles, however, require not only highly 
accurate but also reliable predictions with a consistent measure of uncertainty.

LiDAR Camera

Uncertainty Measure
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3D Semantic Segmentation Methods
Pros

Extremely accurate depth information
360 degrees of visibility (Increased range)

Cons
Sparse and unstructured data
Non-uniform sampling
Scanning frequency ~ 10 Hz 
Expensive ~ 100.000 $
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3D Semantic Segmentation Methods

Mean IoU versus runtime plot for the state-of-the-art 3D point cloud semantic segmentation networks on the 
Semantic-KITTI dataset. Inside parentheses are given the total number of network parameters in Millions. 
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3D Semantic Segmentation Methods

There is a clear split between the projection-based and point-wise approaches in terms of accuracy, runtime 
and memory consumption. 
Both point-wise and projection-based approaches in the literature lack uncertainty measures, i.e. 
confidence scores, for their predictions.

Goal: We aim at achieving a fine-grained semantic segmentation of 3D point clouds
with reliable confidence estimates in real-time to reinforce the concept of safe autonomy

Mean IoU versus runtime plot for the state-of-the-art 3D point cloud semantic segmentation networks on the 
Semantic-KITTI dataset. Inside parentheses are given the total number of network parameters in Millions. 



The original SalsaNet model has an encoder-decoder 
architecture with a bottleneck compression rate of 16. 

The SalsaNet encoder unit consists of a series of ResNet 
blocks and the decoder part upsamples and fuses features 
extracted in the residual blocks.

To further exploit descriptive spatial cues, a stack of 
convolution is inserted after the skip connection.

SalsaNet

Aksoy et al., “Salsanet: Fast road and vehicle segmentation in lidar point clouds for autonomous
driving,” in IEEE IV, 2020.

SalsaNext: The Original SalsaNet Model



SalsaNext

Raw 3D LiDAR Point Cloud

Range View Image

Network Input: We project the 3D LiDAR 
point cloud onto a spherical surface to 
generate the Range View image:
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where ℎ 𝑎𝑛𝑑 𝑤 denote the height and width of the
projected image, 𝑟 is the range of each point as
𝑟 = 𝑥" +𝑦" +𝑧" and 𝑓 defines the sensor
vertical field of view as 𝑓 = 𝑓$%&' + 𝑓() .

Range View image dimension is [ℎ 𝑥 𝑤 𝑥 5]
where channels are 𝒙, 𝒚, 𝒛, 𝒊𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚, 𝒓𝒂𝒏𝒈𝒆.

SalsaNext: Input

Cortinhal et al., “Salsanext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds 
for Autonomous Driving,” in arXiv, 2020.



SalsaNext: Context Module

The layer elements k, d, and bn represent the kernel size, dilation rate and batch normalization, respectively.

Global Multi-scale Context Module: To aggregate the context information in different regions, we place a
residually connected dilated convolution stack that fuses a small receptive field (1x1) with a larger one (3x3
kernels with dilation rates=(1,2)) by applying element-wise addition.
Starting with relatively small 1x1 kernels helps aggregate channel-wise local spatial features while having 3x3 
kernels with different dilation rates captures various complex correlations between different segment classes. 
This helps focusing on more contextual information alongside with more detailed global spatial information 
via pyramid pooling (similar to Atrous Spatial Pyramid Pooling in DeepLabv3).

Cortinhal et al., “Salsanext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds 
for Autonomous Driving,” in arXiv, 2020.



SalsaNext: Encoder

In the encoder, we replace the ResNet blocks in the original SalsaNet encoder with a novel combination of a set of 
dilated convolutions having effective receptive fields of 3, 5 and 7 (see Block I). 
We further concatenate each dilated convolution output and apply a 1x1 convolution followed by a residual connection 
to exploit more information from the fused features coming from various depths in the receptive field. 
Each of these new residual dilated convolution blocks (i.e. Block I) is followed by dropout and pooling layers as 
depicted in Block II.  

The layer elements k, d, and bn represent the kernel size, dilation rate and batch normalization, respectively.

Cortinhal et al., “Salsanext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds 
for Autonomous Driving,” in arXiv, 2020.



SalsaNext: Decoder

The layer elements k, d, and bn represent the kernel size, dilation rate and batch normalization, respectively.

Cortinhal et al., “Salsanext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds 
for Autonomous Driving,” in arXiv, 2020.

In the decoder, we replace the original transpose convolutions, which are computationally expensive in terms of 
number of parameters, with pixel-shuffle layer (Block III) which directly leverages on the feature maps to upsample
the input with less computation.
Pixel-shuffle is a differentiable process which rearranges elements from depth dimension to spatial domain in a 
deterministic way.  



SalsaNext: Decoder

The layer elements k, d, and bn represent the kernel size, dilation rate and batch normalization, respectively.

Cortinhal et al., “Salsanext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds 
for Autonomous Driving,” in arXiv, 2020.

Consequently, shuffling pixels in the decoder leads to more accurate image reconstruction as it introduces fewer 
checkerboard artifacts with a vastly reduced number of parameters. 
We additionally double the filters in the decoder side and concatenate the pixel-shuffle outputs with the skip 
connection (Block IV) before feeding them to the dilated convolutional blocks (Block V) in the decoder.



SalsaNext: Regularization

The layer elements k, d, and bn represent the kernel size, dilation rate and batch normalization, respectively.

Cortinhal et al., “Salsanext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds 
for Autonomous Driving,” in arXiv, 2020.

Central dropout treatment: To boost the roles of very basic features (e.g. edges and curves) in the segmentation 
process, we applied central dropout treatment by omitting the first and last network layers in the dropout process. 
Average pooling: To have a lighter model, we also employed average pooling for down-sampling instead of having 
stride convolutions in the encoder.
Post-processing: We finally apply a kNN-based post-processing method to handle the information loss due to 
discretization errors when the network output, i.e. an RV image is re-projected back to the original 3D space.



SalsaNext: Loss Function

The layer elements k, d, and bn represent the kernel size, dilation rate and batch normalization, respectively.

Cortinhal et al., “Salsanext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds 
for Autonomous Driving,” in arXiv, 2020.

To cope with the imbalanced class problem, we 
add more value to the underrepresented classes by 
weighting the softmax cross-entropy loss (Lwce) 
with the inverse square root of class frequency. 
We further compute the Lovasz-Softmax loss (Lls)
to directly optimize the Jaccard index. 



SalsaNext: Uncertainty Estimation

The layer elements k, d, and bn represent the kernel size, dilation rate and batch normalization, respectively.

Cortinhal et al., “Salsanext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds 
for Autonomous Driving,” in arXiv, 2020.

Bayesian treatment for the uncertainty estimation

Epistemic (Model) Uncertainty σmodel

σnoise Aleatoric (Data) Uncertainty
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Aleatoric

Epistemic

SalsaNext: Uncertainty Estimation

Cortinhal et al., “Salsanext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds 
for Autonomous Driving,” in arXiv, 2020.

Bayesian treatment for the uncertainty estimation

Epistemic (Model) Uncertainty σmodel

σnoise Aleatoric (Data) Uncertainty
Assumed Density Filtering

Monte-Carlo Dropout

σdata
σtotal+

The predictive uncertainty comes from two sources:

Aleatoric (Data) Uncertainty
is measurement-based which arises from the sensor noise, data representation and label noise, etc.
deals with the potential intrinsic randomness of the sensor, i.e. real data generating process.
is also called data or irreducible uncertainty since it might not be reduced by having more data.
e.g. may occur on segment boundaries or distant objects due to noisy sensor readings which are 
inherent in sensors. 

Epistemic (Model) Uncertainty
is model-based which arises from the uncertainty of model parameters
reflects the limitation of the model on describing the biased training data 
can be reduced by enlarging the dataset 

results from a lack of training data in certain areas of the input domain
e.g. a rare sample should have higher model uncertainty than a sample which appears more often in 
the training data (imbalanced class problem).



SalsaNext: Uncertainty Estimation
To compute the Aleatoric (Data) Uncertainty:

we make use of prior information about the data, e.g. sensor noise.
we forward-propagate sensor noise (i.e. the input uncertainty) through the 
network by using Assumed Density Filtering (ADF) which replaces each 
network activation, including input and output, by probability distributions. 

ADF is a method for approximating the true posterior with a tractable parametric 
distribution in Bayesian networks. 

When the posterior computed by Bayes’ rule does not belong to the original 
parametric family, it can be approximated by a distribution belonging to the 
parametric family. 
In ADF, the posterior is projected onto the closest distribution in the family of 
interest by minimizing the reverse KL divergence between the true posterior 
and approximate posterior.
In ADF, we choose a distribution that is easy for us to work with and project 
the true posterior after each measurement update onto this distribution family.  

J. Gast and S. Roth, “Lightweight 
probabilistic deep networks,” CVPR, 2018

Deterministic ADF

In ADF network, each intermediate layer i, also outputs a distribution represented by some parameters 𝒗𝒛𝒊 rather 
than a point estimate 𝒛(𝒊).

A forward pass in this ADF-based modified neural network generates output predictions μ with their respective 
aleatoric uncertainties σdata.

ADF basically approximates the distribution of activation functions, instead of just weights, which leads to a 
simple and effective method with a smaller computational footprint.

Cortinhal et al., “Salsanext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds 
for Autonomous Driving,” in arXiv, 2020.



In a standard deterministic NN, each 
weight has a fixed value (w*) as provided 
by classical backpropagation

In a BNN, each weight is assigned 
a posterior distribution, 
parameterized by theta (qθ(w)).

SalsaNext: Uncertainty Estimation

Cortinhal et al., “Salsanext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds 
for Autonomous Driving,” in arXiv, 2020.

To compute the Epistemic (Model) Uncertainty, we 
employ Monte Carlo sampling during inference, 
i.e. use dropout to approximate the intractable 
weight posterior.

We run N trials and compute the average of the 
variance of the N predicted outputs: 

At test time, a weight sample w1 is drawn 
from the posterior distribution of the weights, 
and the resulting network is used to generate 
a prediction p(y|x,w1) for an example x. 
The same can be done for samples w2 and 
w3 , yielding predictions p(y|x,w2) and 
p(y|x,w3), respectively. 
The three networks are treated as an 
ensemble and their predictions averaged.

For an already trained network, the optimal 
dropout rate p is estimated by applying a grid search 
in the range [0; 1]. This means that the optimal 
dropout rates p will minimize

Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: 
Representing model uncertainty in deep learning,” in ICML, 2016.

This method does not require any change in the 
optimization or learning process, thus, can be directly 
applied to an already trained network. 

A. Loquercio, M. Segu, and D. Scaramuzza, “A general framework for 
uncertainty estimation in deep learning,” IEEE RA-L, 2020

𝑝 = argmin
"̂
)
#$%

1
2
log 𝜎&'&# +

1
2𝜎&'&#

(𝑦# − 𝑦"()## 𝑝̂ )*



Quantitative Results on the Semantic-KITTI Test-set

3.
6%

SalsaNext considerably outperforms the others by leading to the highest mean IoU score (59.5%) which is +3.6% over 
the previous state-of-the-art method.

In contrast to the original SalsaNet, we obtain more than 14% improvement in the accuracy. 

When it comes to the performance of each individual category, SalsaNext performs the best in 9 out of 19 categories. 
In most of these remaining 10 categories (e.g. road, vegetation, and terrain) SalsaNext has a comparable performance 
with the other approaches.



Quantitative Results on the Semantic-KITTI Test-set

Quantitative relationship between the epistemic 
uncertainty and the number of points that each 
class has in the entire Semantic-KITTI test set.

Network becomes less certain about rare classes 
represented by low number of points (e.g. 
motorcyclist and motorcycle). 

There also exists, to some degree, an inverse 
correlation between the obtained uncertainty and 
the segmentation accuracy, e.g. motorcyclist 
which has the lowest IoU score (19.4%).



Ablation Study

RUNTIME PERFORMANCE

ABLATIVE ANALYSIS ON THE VALIDATION SET

The post processing step leads to a certain jump 
(around 2%) in the accuracy. 

Dilated convolution stack causes a peak in the model 
parameters, which is vastly reduced after adding the 
pixel-shuffle layers 

Switching to the pixel-shuffle layers yields 1% more 
accuracy while having 2.5M less parameters.

Runtime Evaluation
SalsaNext exhibits better performance compared to 
RangeNet++ while having 7x less parameters.

SalsaNext can run at 24 Hz when the uncertainty 
computation is excluded for a fair comparison with 
deterministic models. 

This speed is significantly faster than the sampling rate 
of mainstream LiDAR sensors which is typically 10 Hz.

Combining the weighted cross-entropy loss with Lovasz-Softmax leads to the highest increment in the accuracy, since 
the Jaccard index which is the main metric to measure the segmentation accuracy is directly optimized.

Consequently, we achieve the highest accuracy score of 59.9% by having only 2.2% (i.e. 0.15M) extra parameters 
compared to the original SalsaNet. 



More info:

Qualitative Results on the Semantic-KITTI Test-set

https://github.com/TiagoCortinhal/SalsaNext

https://youtu.be/MlSaIcD9ItU

https://arxiv.org/pdf/2003.03653.pdf

tiago.cortinhal@hh.se eren.aksoy@hh.se

Sample qualitative results: At the bottom the range-view image of the network response is shown. Camera images on the right are only for
visualization purposes and have not been used in the training. The top camera image shows the projected segments whereas the middle and
bottom images depict the projected epistemic and aleatoric uncertainties. The lighter the color is, the more uncertain the network becomes.

https://github.com/TiagoCortinhal/SalsaNext
https://youtu.be/MlSaIcD9ItU
https://arxiv.org/pdf/2003.03653.pdf
mailto:tiago.cortinhal@hh.se
mailto:eren.aksoy@hh.se


More info:

Conclusion

https://github.com/TiagoCortinhal/SalsaNext

https://youtu.be/MlSaIcD9ItU

https://arxiv.org/pdf/2003.03653.pdf

tiago.cortinhal@hh.se eren.aksoy@hh.se

We presented a new uncertainty-aware semantic segmentation network, named SalsaNext.

Our contributions lie in the following aspects that can process the full 360 LiDAR scan in real-time. 

SalsaNext builds up on the SalsaNet model and can achieve over 14% more accuracy. 

In contrast to previous methods, SalsaNext returns +3.6% better mIoU score. 

Our network differs in that SalsaNext can also estimate both data and model-based uncertainty.

https://github.com/TiagoCortinhal/SalsaNext
https://youtu.be/MlSaIcD9ItU
https://arxiv.org/pdf/2003.03653.pdf
mailto:tiago.cortinhal@hh.se
mailto:eren.aksoy@hh.se


More info:

https://github.com/TiagoCortinhal/SalsaNext

https://youtu.be/MlSaIcD9ItU

https://arxiv.org/pdf/2003.03653.pdf

tiago.cortinhal@hh.se eren.aksoy@hh.se

Questions & Comments

https://github.com/TiagoCortinhal/SalsaNext
https://youtu.be/MlSaIcD9ItU
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