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Environmental mapping

 GNSS-based
✓ global consistency

• signal denial

 SLAM-based
✓ local consistency

• cumulative error

Map form

 Point cloud map
✓ accuracy

• data size

• real-time performance

 2D grid map
✓ data size & speed

• information lost

 Feature map
✓ accuracy & speed

• sensitive to the environment

Related work
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Semantic grid map 

▪ Feature selection

▪ Abundant in urban scenarios

▪ Strongly imply static

▪ Extractable from scan-level sparse point cloud

▪ Sufficient pose constraints from multiple layers

▪ Semantic grid map

▪ To speed up the calculation

▪ Semantic category with a trust rate
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Localization

▪ On-line pose initialization

▪ Large range search

▪ Limited to the first several frames

▪ Relatively low real-time requirements

-> to keep as much map detail as possible, the SGM is in 3D formed by cubes

▪ Real-time trajectory tracking

▪ Can inherit an accurate initial position from the previous frame

▪ Every frame

▪ Strict real-time requirements (typically 100ms)

-> to ensure the calculation speed, the SGM is in 2D formed by squares



▪ On-line pose initialization

▪ Notation

Map Cubes

Scan Cubes

Semantic 
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Localization

GMM



Real-time trajectory tracking

▪ Real-time trajectory tracking

▪ Notation

▪ Residual error 
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Experiment

▪ Processor

▪ Intel i7-7567U @3.5GHz with 16GB memory

▪ Express road

▪ 5.2km long



Experiment

▪ On-line pose initialization

▪ (0.2m) 3 cube

▪ horizontal offset uniform distribution

in 50m circle

▪ up to 90 degree offset 

▪ a special case

Conjunction

Initial position

CPD

Ours

2nd iteration Result



▪ Real-time trajectory tracking

▪ (0.1m) 2 square

Experiment



▪ Processor

▪ Intel i7-7567U @3.5GHz with 16GB memory

▪ Factory

▪ 1.5km long

Experiment



Thank you for your attention!


