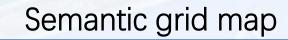


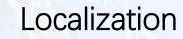
Semantic Grid Map based LiDAR Localization in Highly Dynamic Urban Scenarios

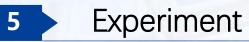

12th IROS20 Workshop on Planning, Perception and Navigation for Intelligent Vehicles

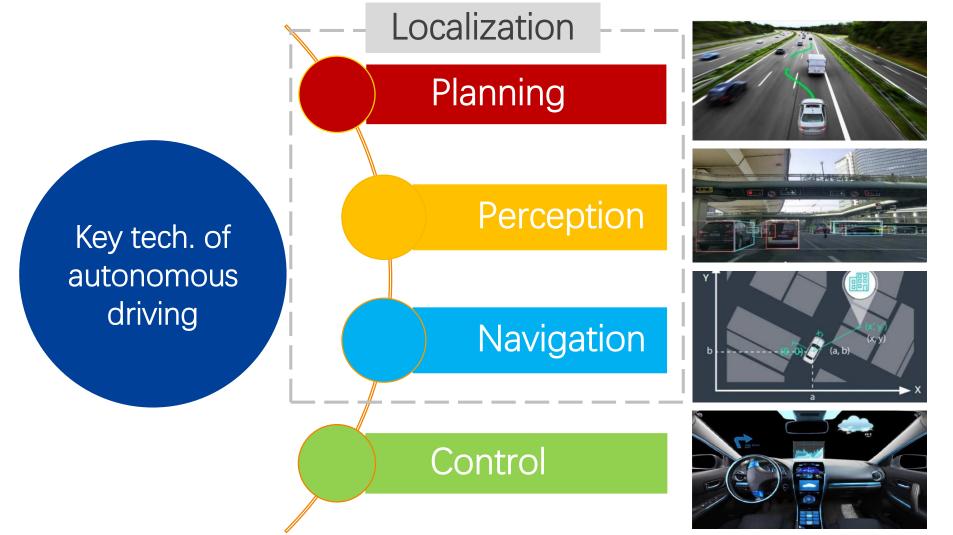
Chenxi Yang, Lei He, Hanyang Zhuang, Chunxiang Wang, Ming Yang* * mingyang@sjtu.edu.cn Oct. 2020



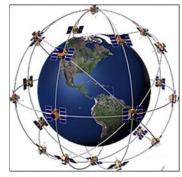
This work is supported by the National Natural Science Foundation of China (U1764264/61873165)







Introduction


Introduction

Localization in AD

Dynamic interferences

Signal denial Multipath effect

Illuminance changes Low reliability Robust to illuminance High reliability

Introduction

Related work

Semantic grid map

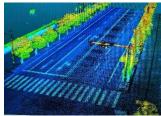
Environmental mapping

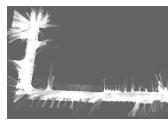
- □ GNSS-based
 - ✓ global consistency
 - signal denial •

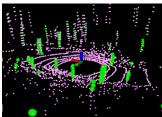
- SLAM-based
 - ✓ local consistency
 - cumulative error

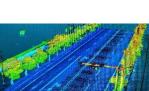
Map form

Point cloud map

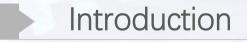

- ✓ accuracy
- data size •
- real-time performance


D 2D grid map


- ✓ data size & speed
- information lost


Feature map

- ✓ accuracy & speed
- sensitive to the environment

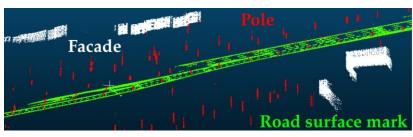


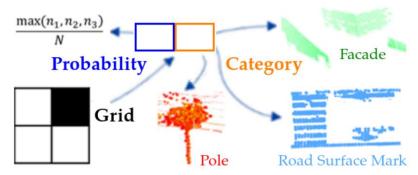
Non-semantics: dynamic interference

Semantics: difficult to find a balance between real-time and robustness

Multiple semantic features

Semantic grid map





Semantic grid map

- Feature selection
 - Abundant in urban scenarios
 - Strongly imply static
 - Extractable from scan-level sparse point cloud
 - Sufficient pose constraints from multiple layers
- Semantic grid map
 - To speed up the calculation
 - Semantic category with a trust rate

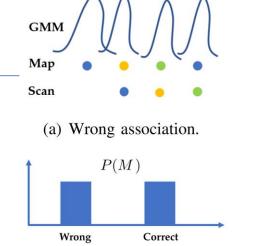
Map structure	Size(MB/km)
Point cloud map	≥ 1000
Semantic point cloud map	34
Grid map	5.3
Semantic grid map (Ours)	1.1

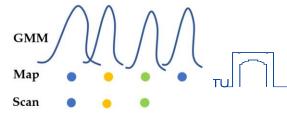
Semantic grid map

Localization

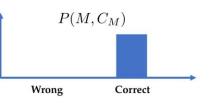
Localization

- On-line pose initialization
 - Large range search
 - Limited to the first several frames
 - Relatively low real-time requirements
 - -> to keep as much map detail as possible, the SGM is in 3D formed by cubes
- Real-time trajectory tracking
 - Can inherit an accurate initial position from the previous frame
 - Every frame
 - Strict real-time requirements (typically 100ms)
 - -> to ensure the calculation speed, the SGM is in 2D formed by squares


Localization

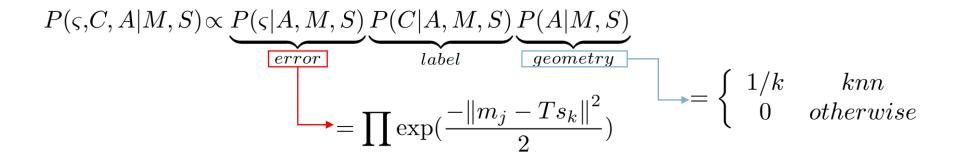

- On-line pose initialization
 - Notation

T

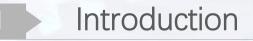

- Map M Cubes $m_1,...,m_J$
- Scan S Cubes $s_1, ..., s_K$

j=1

(b) Correct association.


A. Myronenko and X. Song, "Point set registration: Coherent point drift," *IEEE transactions on pattern analysis and machine intelligence*, vol. 32, no. 12, pp. 2262–2275, 2010.

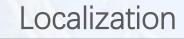
Real-time trajectory tracking

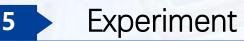

- Real-time trajectory tracking
 - Notation $A = \{a_{j,k}\}$ where $a_{j,k} = (m_j, s_k)$
 - Residual error $\varsigma = M T \times S$

$$T^* = \underset{T}{\operatorname{arg\,max}} P(\varsigma, C, A | M, S)$$

A. Myronenko and X. Song, "Point set registration: Coherent point drift," *IEEE transactions on pattern analysis and machine intelligence*, vol. 32, no. 12, pp. 2262–2275, 2010.

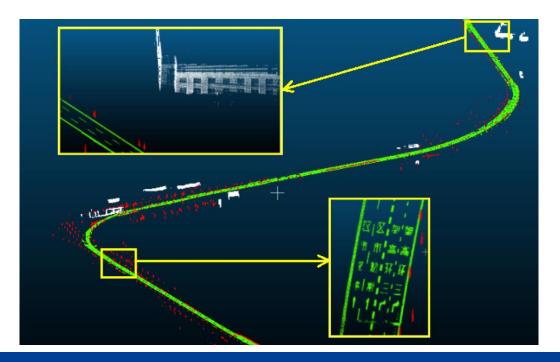
Contents

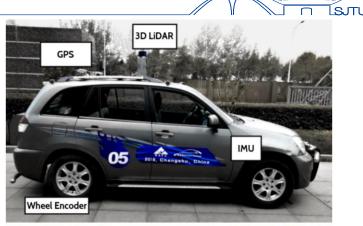


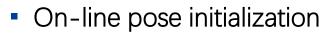


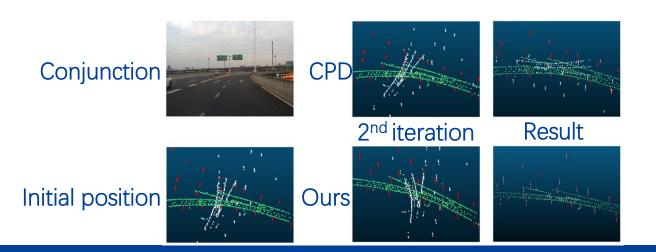
Related work

Semantic grid map






- Processor
 - Intel i7-7567U @3.5GHz with 16GB memory
- Express road
 - 5.2km long



- (0.2m)³ cube
- horizontal offset uniform distribution in 50m circle
- up to 90 degree offset
- a special case

	Trans.(m)	30°	60°	90°
CPD	Mean Max	0.17 0.18	0.19 0.50	6.42 67.3
Our method	Dur method Mean Max		0.18 0.24	0.13 0.30
	Yaw.(°)	30°	60°	90°
CPD	Mean Max	0.18 0.20	0.19 0.48	3.83 6.80
Our method	Our method Mean Max		0.13 0.16	0.11 0.18
	90°			
CPD	Mean			7.25
Our method	Mean			3.23

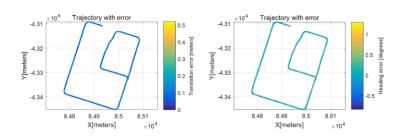
- Real-time trajectory tracking
 - (0.1m)² square

	Lat.(m)	Lon.(m)	Trans.(m)	Yaw.(°)
Semantic ICP	0.20	0.24	0.31	0.20
Grid Localization	0.11	≥ 2	≥ 2	≥ 2
Poles	0.37	0.33	0.55	1.86
Road marks	0.10	≥ 2	≥ 2	0.37
Facades	0.09	-	-	0.54
Our method	0.08	0.12	0.16	0.27

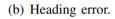
โรม

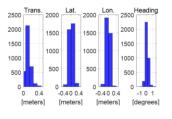
 $\overline{}$

Method	Mean operation time(ms)
Semantic ICP	150.40
Grid Localization	44.03
Poles	15.14
Road marks	16.34
Facades	14.08
Our method	23.41

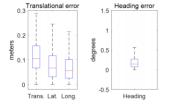

Processor

Intel i7-7567U @3.5GHz with 16GB memory

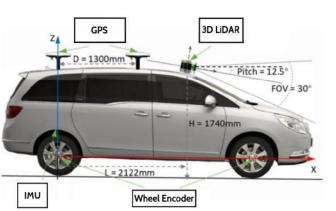

Factory


1.5km long

		Trans.(m)	Lat.(m)	Lon.(m)	Yaw.(°)
3	Express road	0.14	0.06	0.11	0.21
	Factory	0.12	0.07	0.08	0.19



(a) Translation error.



(c) Error histogram.

(d) Error boxplot.

Thank you for your attention!

