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What happens when uncertainty is not considered?
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Information Processing Architectures

 How would you architect your stack?

 Where should learning be incorporated? 

 What notions of robustness we have?

Tubes Full Blown Model
Learning 

Adaptive + Predictive 

Tube-MPPI Robust MPPI

z

MPPI

Model Predictive Path Integral (MPPI) Control

(-) Importance Sampler may get 
stuck to a local minima.

(-) Nominal State is chosen 
independent of Actual State.

(-) Importance Sampling is 
unaware of the underlying 
ancillary controller.

(+) Augmented Importance 
Sampling.

(+) Nice Trade-off between 
agility and robustness.

(-) Robustness issues when 
Large disturbances.



✓Performance near dynamic limits 
✓Constraint satisfaction 
✓Real-Time Performance

Fast
Re-optimization

GPU

Low Level 
Re-optimization

Fast re-planning on GPU on nominal dynamics/Fast Tracking on a CPU

Robust MPPI

Free Energy Diff < Levels Constraint Satisfaction + Tracking/Uncertainty + Sampling Error

Learning Deep Tubes for Robust MPC



Learning Deep Tubes for Robust MPC

Sully Miracle on the Hudson
Airbus 320 lost both engines shortly after takeoff due to bird strike.
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Courtesy: NASA Langley Aerodrome
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 Stochastic Control Barrier Functions

 Stochastic Control Lyapunov Functions

Bayesian Neural Networks

Adaptation and Online Learning
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Algorithm 1: BAyesian Learning-based Safety and Adap-
tation (BALSA)

1 Require: Prior model f̂(x), known g(x), reference
trajectory xrm, choice of modeling algorithm
Δ̄i(x)∼N (mi(x),σi(x)), dt, A, Hu≤b.

2 Initialize: i=0, Dataset D0=∅, t=0, solve P
3 while true do
4 Obtain μrm= ẋ2rm(t) and compute μpd

5 Compute model error and uncertainty
μad=mi(x(t)), and σi(x(t))

6 μqp← Solve QP (17)
7 Set u(t)=g(x)−1(μrm+μpd+μqp−μad−f̂(x))
8 Apply control u(t) to system.
9 Step forward in time t← t+dt.

10 Append new data point to database:
11 X̄t=[x(t)], Ȳt=

(x2(t+dt)−x2(t))/dt−(f̂(x(t))+g(x(t)u(t)).
12 Di←Di∪{X̄t,Ȳt}
13 if updateModel then
14 Update model Δ̄i(x,μ) with database Di

15 Di+1←Di, i← i+1 Stochastic Control Barrier Functions

 Stochastic Control Lyapunov Functions

Bayesian Neural Networks

How do we bring adaptation?
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Adaptation and Online Learning

MPPI

Tracking
Controller

Low Level
Adaptive 
Control

Case L1 off L1 on
1) � �
2) � �
3) � �
4) � �
5) � �

1) known dynamics model (since drag is not modeled
in the nominal dynamics, some drag compensation is
expected with L1 augmentation);

2) mass increase by 50%;
3) moment of inertia increase by 100% in all axes;
4) constant nose-up pitching moment disturbance of

0.1 Nm (equivalent to center of gravity offset);
5) reduction in motor thrust control power by 40% (reduc-

tion in both T̄δT and M̄δM ).
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x ∼ PID(X ) x ∼ PL(X )System ID Distribution: Local Distribution:

θi+1 = θi − γ (αGL(θi) +GID(θi))

α = max
a∈[0,1]

s.t 〈aGL(θi) +GID(θi), GID(θi)〉 ≥ 0

Proposed Scheme:

θi+1 = θi − γGL(θi)Update Scheme: θi+1 = θi − γ(GL(θi) +GID(θi))

LWPR: y =

L∑
i=1

wi · fi(x− ci), wi =
exp

(− 1
2 (x− cI)

TDi(x− ci)
)

∑L
j=1 exp

(− 1
2 (x− cj)TDj(x− cj)

)

G. Williams et all, arXiv:1905.05162, Submitted

Adaptation and Online Learning

Adaptive Model Predictive Control 

Computation
Size FLOPs/Prediction

LWPR 5,645 (Receptive Fields) > 141, 125
Neural Network 1,412 (Weights and Biases) 2, 688

Base SGD LW-PR2 LWPR
Roll Rate 0.01 0.01 0.01 0.01

Long. Acc. 2.73 2.28 2.30 2.06
Lat. Acc. 1.71 1.29 1.24 1.28

Head. Acc. 8.28 4.48 4.87 4.54
Total MSE 3.18 2.10 2.11 1.97

Active MSE N/A N/A 2.54 N/A

Performance
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What is the optimal IPA for perceptual control?

Is the design of IPA imposed by the nature of the data?

Do we have any priors for designing IPAs?

How important is the structure of IPAs for safety in AI?

Questions:

Information Processing Architecture (IPA) 
for Perceptual control

Decision Making 
Control

Perception/ML

Information Processing Architectures : IPA
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Filtering MPCSensors Systems

Teacher  - Fully observable MPC Learner

Y. Pan et all  RSS 2018.

IPA-I

Y. Pan et all  RSS 2018.

IPA-I



IPA-I & Uncertainty Quantification

Aleatoric - Incomplete data
Epistemic- Incomplete  knowledge of the environment.

Types of Uncertainty in ML Models

K. Lee et all  ICRA 2019.

�̂�

�̂�2

IPA-I & Uncertainty Quantification

At Training  Time  Minimize the Loss: 

Total Uncertainty:

At Test Time Sample the structure of the Network:



Uncertainty Quantification  & Redundancy 

IPA-II: The Macula-Net
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K. Lee et all, arXiv:1904.11898, 
Submitted



IPA-II: The Macula-Net
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AI in Aerospace Systems

IPA-IV: PixelMPC

ṗ = v

v̇ = g +m−1(Rω
b fT+fD +wf )

q̇ =
1

2

⎡
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Ẋpixel = Fpixel(q,Xpixel,U)

= PolarToEuler(DOF (q,Xpixel,U))

Drone Dynamics Pixel Dynamics

Augmented Dynamics



IPA-IV: PixelMPC
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Decision Making Architectures

Partial Differential 
Equations

Stochastic Differential
Equations

Stochastic Optimal Control Forward/Backward Stochastic 
Differential Equations (FBSDEs)

Perceptual Decision Making Risk Measures  and Stochastic 
Differential Games

Perceptual Decision Making Control Barrier Functions & 
Barrier Certificates 

Deep Neural Network
Architectures

Perceptual Decision Making Adaptive Control & 
Contraction Theory



Safety & Deep Learning Theory

xt+1 = ft(xt,ut)

min
u

J(ū;x0) = min
u

[
φ(xT ) +

T−1∑
t=0

�t(xt,ut)

]
State Output Activation

Controls Weights

Time Horizon Number of Layers 

Terminal Cost Loss Functions

Optimal Control Deep Learning

Cost Function

Dynamics

Autonomous Control and Decision Systems Lab

Vertical Lift Research 
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