Decision Making Architectures for Safe Planning and Control of Agile Autonomous Vehicles

Evangelos A. Theodorou Autonomous Control and Decision Systems Lab

Perceptual Decision Making

Terrestrial

Georgia Institute of Technology

Outline

Control Architectures & Uncertainty

Control Architectures & Perception

Conclusions and Future

What happens when uncertainty is not considered?

Information Processing Architectures

How would you architect your stack?

Where should learning be incorporated?

What notions of robustness we have?

Model Predictive Path Integral (MPPI) Control

Tube-MPPI

MPPI

er may get (-) Nominal State is chosen independent of Actual State.

(-) Importance Sampling is unaware of the underlying ancillary controller.

Robust MPPI

(+) Augmented Importance Sampling.

(+) Nice Trade-off between agility and robustness.

(-) Importance Sampler may get stuck to a local minima.

(-) Robustness issues when Large disturbances.

Robust MPPI

✦ Fast re-planning on GPU on nominal dynamics/Fast Tracking on a CPU

- Sandia National Laboratories
- ◆ Free Energy Diff < Levels Constraint Satisfaction + Tracking/Uncertainty + Sampling Error

Learning Deep Tubes for Robust MPC

$$\begin{split} \min_{\substack{v_{\cdot|t} \in \mathbb{V}}} J_T(v_{\cdot|t}, z_{\cdot|t}, \omega_{\cdot|t}) \\ s.t. \forall k = 0, \cdots, T: \\ z_{k+1|t} = f_z(z_{k|t}, v_{k|t}) \\ \omega_{k+1|t} = f_{\omega}^{\theta}(\omega_t, z_t, v_t, t) \\ \omega_{0|t} = d(x_t, z_{0|t}) \\ z_{T|t} = f_z(z_{T|t}, v_{T|t}) \\ \omega_{T|t} \ge f_{\omega}^{\theta}(\omega_{T|t}, z_{T|t}, v_{T|t}, T) \\ \Omega_{\omega_{k|t}}(z_{k|t}) \subseteq \mathcal{C} \end{split}$$

$$\begin{aligned} z_{t+1} &= f_z(z_t, v_t) \\ \omega_{t+1} &= f_\omega(\omega_t, z_t, v_t, t) \\ P(d(x_t, z_t) \leq \omega_t) \geq \alpha, \quad \forall t \in \mathbb{N} \\ \pi(x, z) : \mathbb{X} \times \mathbb{Z} \to \mathbb{U} \\ d(x, z) &= |P_{\mathbb{Z}}(x) - z| \in \mathbb{R}^{n_z} \\ \Omega_\omega(z) &:= \{x \in \mathbb{X} : d(x, z) \leq \omega\} \\ \Omega_\omega(z) &:= \{x \in \mathbb{X} : \|P_{\mathbb{Z}}(x) - z\|_\omega \leq 1\} \end{aligned}$$

Theorem III.1. Suppose that the MPC problem [13] is feasible at t=0. Then the problem is feasible for all $t>0\in\mathbb{N}$ and at each timestep the constraints are satisfied with probability α .

Learning Deep Tubes for Robust MPC

$$\begin{split} \dot{p}_x &= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -k_f \end{bmatrix} p_x + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u_x + \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} w \\ \dot{z}_x &= \begin{bmatrix} 0 & 1 \\ 0 & -k_f^z \end{bmatrix} z_x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} v_x \quad w \sim \mathcal{N}(0, \epsilon I_{2 \times 2}) \end{split}$$

$$e_x = k_e(z_x - p_x)$$

$$\pi_x(p_x, z_x) = k_p(e_x - \dot{p}_x + \dot{z}_x) + k_d(-\ddot{p}_x)$$

Georgia Tech

Sully Miracle on the Hudson

•Airbus 320 lost both engines shortly after takeoff due to bird strike.

Adaptation and Online Learning

- Stochastic Control Lyapunov Functions
- **Bayesian Neural Networks**

How do we bring adaptation?

- $\mu_{qp} \leftarrow \text{Solve QP} (17)$ Set $u(t) = g(x)^{-1}(\mu_{rm} + \mu_{pd} + \mu_{qp} - \mu_{ad} - \hat{f}(x))$ Apply control u(t) to system.
- Step forward in time $t \leftarrow t + dt$.
- Append new data point to database:
- $\bar{X}_t = [x(t)], \ \bar{Y}_t =$

7

8

9

10

11

12 13

14

- $\begin{array}{l} (x_2(t+dt)-x_2(t))/dt (\hat{f}(x(t))+g(x(t)u(t))).\\ \mathcal{D}_i \leftarrow \mathcal{D}_i \cup \{\bar{X}_t, \bar{Y}_t\} \end{array}$
- $if \ updateModel \ then$
 - Update model $\bar{\Delta}_i(x,\mu)$ with database \mathcal{D}_i
 - $\mathcal{D}_{i+1} \leftarrow \mathcal{D}_i, i \leftarrow i+1$

Planned

Stochastic Control Barrier Functions

0.0

2 5

-25

- Stochastic Control Lyapunov Functions
- **Bayesian Neural Networks**

0

-2.5

0.0

2 5

Adaptation and Online Learning

Adaptation and Online Learning

- 1) known dynamics model (since drag is not modeled in the nominal dynamics, some drag compensation is expected with \mathcal{L}_1 augmentation);
- 2) mass increase by 50%;
- 3) moment of inertia increase by 100% in all axes;
- 4) constant nose-up pitching moment disturbance of 0.1 Nm (equivalent to center of gravity offset);
- 5) reduction in motor thrust control power by 40% (reduction in both \bar{T}_{δ_T} and $\bar{\mathbf{M}}_{\delta_M}$).

Adaptation and Online Learning

System ID Distribution: $\mathbf{x} \sim \mathcal{P}_{ID}(\mathcal{X})$

Local Distribution: $\mathbf{x} \sim \mathcal{P}_L(\mathcal{X})$

Update Scheme: $\theta_{i+1} = \theta_i - \gamma G_L(\theta_i)$ $\theta_{i+1} = \theta_i - \gamma (G_L(\theta_i) + G_{ID}(\theta_i))$

Proposed Scheme: $\theta_{i+1} = \theta_i - \gamma \left(\alpha G_L(\theta_i) + G_{ID}(\theta_i) \right)$ $\alpha = \max_{a \in [0,1]} s.t \left\langle a G_L(\theta_i) + G_{ID}(\theta_i), G_{ID}(\theta_i) \right\rangle \ge 0$

G. Williams et all, arXiv:1905.05162, Submitted

Adaptive Model Predictive Control

Computation		Size	FLOPs/Prediction	
	LWPR	5,645 (Receptive Fields)	> 141, 125	
	Neural Network	1,412 (Weights and Biases)	2,688	

Performance		Base	SGD	$LW-PR^2$	LWPR
	Roll Rate	0.01	0.01	0.01	0.01
	Long. Acc.	2.73	2.28	2.30	2.06
	Lat. Acc.	1.71	1.29	1.24	1.28
	Head. Acc.	8.28	4.48	4.87	4.54
	Total MSE	3.18	2.10	2.11	1.97
	Active MSE	N/A	N/A	2.54	N/A

Muddy-Driving on 1/5 Scale Vehicle

Section V-B

Outline

Control Architectures & Uncertainty

Control Architectures & Perception

Conclusiona and Future

Outline

Motivation & Intro

Control Architectures & Uncertainty

Control Architectures & Perception

Conclusion and Future

Information Processing Architectures : IPA

IPA-I

Y. Pan et all RSS 2018.

IPA-I & Uncertainty Quantification

Types of Uncertainty in ML Models Aleatoric - Incomplete data Epistemic- Incomplete knowledge of the environment.

K. Lee et all ICRA 2019.

IPA-I & Uncertainty Quantification

At Training Time Minimize the Loss: $\mathcal{L}(\pi) = \frac{1}{2\hat{\sigma}^2} ||u^* - \hat{u}||^2 + \frac{1}{2}\log(\hat{\sigma}^2)$

At Test Time Sample the structure of the Network:

Uncertainty Quantification & Redundancy

IPA-II: The Macula-Net

(A)

(C)

(B)

8

IPA-II

IPA-III

AI in Aerospace Systems

IPA-IV: PixeIMPC

IPA-IV: PixeIMPC

Outline

Motivation & Intro

Control Architectures & Uncertainty

Control Architectures & Perception

Conclusions and Future

Safety & Deep Learning Theory

Cost Function

$$\min_{\mathbf{u}} J(\bar{\mathbf{u}}; \mathbf{x}_0) = \min_{\mathbf{u}} \left[\phi(\mathbf{x}_T) + \sum_{t=0}^{T-1} \ell_t(\mathbf{x}_t, \mathbf{u}_t) \right]$$

Dynamics

$$\mathbf{x}_{t+1} = f_t(\mathbf{x}_t, \mathbf{u}_t)$$

Collaborators:

Autonomous Control and Decision Systems Lab

Students:

