Risk and Social Behavior for Decision Making for Autonomous Vehicles

Daniela Rus
(with Alexander Amini, Igor Gilitschenski, Teddy Ort, Alyssa Pierson, Wilko Schwarting, Sertac Karaman)
CSAIL, MIT
SMART, MIT

Autonomous Vehicles: Where are they?

Autonomous Vehicles: Where are they?

Autonomous Vehicles: Where are they?

Autonomous Vehicles: Where are they?

Outline

Increased Capabilities: Learning to Drive from Humans

Classical autonomous driving pipeline

Separate problem into smaller sub-modules, tackle each independently

Learning our autonomous controller

Autonomous systems need the ability to handle a wide range of scenarios using raw and complex perception sensors

Leveraging large datasets, we learn an underlying representation of driving based on how humans drive in similar situations

End-to-End Learning

Learn the control directly from raw sensor data

Sensor Fusion

W hat's happening around me?

Learned Model

Underlying representation of how humans drive

Actuation
W hat control signals to take?
[11, 12]

Learning to navigate

End-to-end optimization formulation

Learn a continuous probability distribution over the space of all control $P(\theta \mid I, M)$

End-to-end optimization formulation

Input a route to compute a deterministic control command for navigation

End-to-end optimization formulation

Entire model is trained end-to-end without any human labelling or annotations

Generalization to new roads

Model learned to generalize to new roads and even new types of intersections (ex.roundabouts never included in training)

Correcting pose based on visual perception

W hat do we do when our GPS is not accurate or even not available? $\Rightarrow \operatorname{Var}[P(M)] \gg 0$

$$
P(M \mid I)=\mathbb{E}_{\theta}\left[\frac{P(\theta \mid I, M)}{\mathbb{E}_{M^{\prime}} P\left(\theta \mid I, M^{\prime}\right)} P(M)\right]
$$

Given this image of your surroundings...
... which map are you most likely in?

Correcting pose based on visual perception

W hat do we do when our GPS is not accurate or even not available? $\Rightarrow \operatorname{Var}[P(M)] \gg 0$

$$
P(M \mid I)=\mathbb{E}_{\theta}\left[\frac{P(\theta \mid I, M)}{\mathbb{E}_{M} P\left(\theta \mid I, M^{\prime}\right)} P(M)\right]
$$

Given this image of your surroundings which map are you in?

10/1/20

Increasing Scope of Training with Sim-to-Real

synthesized viewpoints

- End-to-end perception-to-control learning
- Imitate human driving through supervised learning
- Dangerous to collect data from situations vehicles must be able to handle
- Requires large amounts of "gold-standard" human driving
- Difficulty in transferring to new domains, edge cases
- Allow agents to autonomously navigate and learn how to drive without human supervision
- Real world edge-cases and safety-critical scenarios

Related Works

Model-based Simulation

- Lacks photorealism
- Does not capture semantic complexity
- Does not transfer to real world (current state of art)
- [CARLA] Dosovitskiy et al (2017)
- [Torcs] Wymann et al (2000)

Domain Transfer

- Possible to transfer to real world
- Transfer limited to textures
- Lacks photorealism and semantic complexity
- [Wayve] Bewley et al (2018)
- Pan et al (2017)

Data-Driven Simulation

- Photorealistic + transferable
- Not scalable to large scale driving environments
- [Gibson] Xia et al (2018)
- Deformities from nonrealistic assumptions
- [NVIDIA] Bojarski et al (2016)

1. Photorealistic data-driven simulation engine for synthesizing new control trajectories.
2. Real-world transferable reinforcement learning. End-to-end without human imitation.

End-to-end without human supervision

Optimizing high level reward functions

 $$
r_{t}= \begin{cases}1 & \text { if }\|T\|<\varepsilon \\ 0 & \text { otherwise } \Rightarrow \text { "crash" }\end{cases}
$$

Instead of imitating a human driver, directly optimize the agent to maximize its own rewards

$$
\begin{gathered}
\max _{\pi_{\theta}} \mathbb{E}_{\tau \sim \pi_{\theta}}\left[\sum_{t} \gamma^{t} r_{t}\right] \\
\tau=\left\{\left(a_{1}, s_{1}, r_{1}\right),\left(a_{2}, s_{2}, r_{2}\right), \ldots\right\} \sim \pi_{\theta}\left(a_{t} \mid s_{t}\right)
\end{gathered}
$$

End-to-end without human supervision

Results

Direct deployment to real-world without any adjustments

Superior robustness to recover from

 challenging off-orientations

Challenging Environments: No Maps, Weather

Challenges with Maps:

- Scalability
- Maps can grow large; hard to store or transmit regions larger than small cities
- Maintenance
- Maps must be maintained, small changes in the world can cause localization failure
- Coverage
- Rural areas not densely populated and the landscape can change rapidly
- Features

San Francisco, 4 TB [Puttagunta, Civil Maps]

© 2020 Daniela Rus CSAIL MIT

Vision and LiDAR

Changing Environments are Challenging

Localizing Ground Penetrating Radar

- Use Ground Penetrating Radar to build a map of underground features
- Soil content, type, layers can be reliably detected down to $2-3 \mathrm{~m}$
- Radar is unaffected by surface parameters like light and lidar

Related Work

Radar-based Perception

- With LiDAR [Rasshofer, ARS 2005]
- With Cameras [Mori, IV 2007]
- For SLAM
[Schuster, Ward, IV 2016]

Appearance Modeling

- Dynamic Object Removal [Bescos, RA-L 2018]
- Stable Features [Dymczyk, 3DV 2007]
- Landmark Selection [Burki, JFR 2019]

Ground Penetrating Radar

- Soil Analysis
[Rea, Water Resources Research 1998]
- Autonomous Analysis [Williams, IGARSS 2012]
- Localization
[Cornick, JFR 2016]

LGPR System

10/1/20
© 2020 Daniela Rus CSAIL MIT

LGPR Sensor

12 Element Radar Array

Mapping

- Sensor records 2D scans beneath the vehicle [11×369]
- Data rate is up to 126 Hz
- Each scan is stored with a GPS location for localization

Localization

- A single scan is located in the map (5 DOF)
- GPS rough position limits search space

- Interpolation is used between map scans

$$
\text { Correlation: } \quad r_{A, B}=\frac{\sum_{i, d} A_{i, d} B_{i, d}}{\sqrt{\sum_{i, d} A_{i, d}^{2} B_{,, d}^{2}}}
$$

System Evaluation

- Full system implemented on autonomous Prius
- Real-Time-Kinematic GPS Inertial Navigation System for ground-truth

Relative mean error:
$\frac{1}{n} \sum_{n}\left\|\left(T_{G N S S, i}^{t a t}-T_{G N S S, i}^{m a p}\right)-\left(T_{L G P R, i}^{t a t}-T_{L C P R, i}^{\text {map }}\right)\right\|$

Driving in Weather Results

Challenging Interactions:
 Clutter, Human-Robot Systems

Navigating in Clutter

[ocregister.com]

[nacto.org]

- Agnostic to static and
dynamic
obstacles in environment
- Use density and velocity field to
compute
dynamic risk density

Defining a Safety Net

Defining a Safety Net: Risk Level Sets

- Input: position estimates and velocity
- Assumptions:
- Other agents are self-preserving
- Continue moving in current direction
- Output Cost:

$$
H(q, x, t)=\sum_{i=1}^{n} \frac{\exp \left(-\left(\left(q-x_{i}\right)^{T} \Omega_{i}\left(q-x_{i}\right)\right)^{\beta}\right)}{1+\exp \left(\alpha \alpha_{i}^{T}\left(q-x_{i}\right)\right)}
$$

- Risk Level Set: $L_{\bar{p}}=\left\{q \mid H(q, x, t)<H_{P}\right\}$

1. A. Pierson, W. Schwarting, S. Karaman, and D. Rus, Navigating Congested Environments with Risk Level Sets, ICRA 2018
2. A. Pierson, W. Schwarting, S. Karaman, and D. Rus, Learning Risk Level Set Parameters from Data Sets for Safer Driving, IV 2019

Planning in Congestion with Risk Level Sets

Risk Level Sets

- Congestion Cost

$$
H(q, x, t)=\sum_{i=1}^{n} \frac{\exp \left(-\left(\left(q-x_{i}\right)^{T} \Omega_{i}\left(q-x_{i}\right)\right)^{\beta}\right)}{1+\exp \left(\alpha \dot{x}_{i}^{T}\left(q-x_{i}\right)\right)}
$$

- Create level set from cost

$$
L_{\bar{p}}=\left\{q \mid H(q, x, t)<H_{P}\right\}
$$

- Plan actions within $L_{\bar{p}}$
- Higher value of $H_{P} \rightarrow$ higher risk (ICRA 2018)

\square	$\boldsymbol{\square}$
$\boldsymbol{\square}$	$\boldsymbol{\square}$
\boldsymbol{D}	

Simulation: Conservative vs Aggressive Driver

- White area: $L_{\bar{p}}=\left\{q \mid H(q, x, t)<H_{P}\right\}$
- Low $H_{P} \rightarrow$ lower risk, more conservative

Simulation: Conservative vs Aggressive Driver

- White area: $L_{\bar{p}}=\left\{q \mid H(q, x, t)<H_{P}\right\}$
- Low $H_{P} \rightarrow$ lower risk, more conservative

Simulation: Conservative vs Aggressive Driver

- Higher $H_{P} \rightarrow$ larger planning space $L_{\bar{p}}$
- More lane changes

Simulation: Multiple Drivers

- Each car views other cars as obstacles
- Route planner updates to other cars changing lanes

CARLA Validation: Risk Level Sets

- Blue cars: ego agents running risk level sets algorithm

Key Features:

- Integration into our codebase across other platforms
- Multi-ego-vehicle scenarios

Learning Risk Level Set Parameters from Data

- NGSIM and HighD data set validation (IV 2019)
- Quickly identify distributions of environment and driver features

Risk Level Sets without Object Detection

[1] Navigating Congested Environments with Risk Level Sets, ICRA 2018, patent pending
[2] Dynamic Risk Density for Autonomous Navigation in Cluttered Environments without Object Detection, ICRA 2019, submitted

Mixed Human Driven-Robot Car Systems

1. https://www.theinformation.com/articles/waymos-big-ambitions-slowed-by-tech-troubre

Autonomous Driving: Social Dilemma

Social dilemmas: Situations in which collective interests are at odds with private interests

Social Value Orientation (SVO) Ring

Capturing Human Preferences in Social Dilemmas

Altruistic: Maximize other party's utility, without consideration of own outcome.

Prosocial: Benefiting a group as a whole.
Individualistic: Maximize their own outcome, without concern of the utility of other agents.

Competitive: Improve relative gain over others.

Cooperative: All agents are better off.

[^0] European Journal of Personality, vol. 2, no. 3, pp. 217-230, 1988.

Social Value Orientation (SVO) Ring

Studies of Human Preferences

$\sim 90 \%$ of individuals are either prosocial ($\sim 50 \%$) or individualistic ($\sim 40 \%$)
[1] A. Garapin, L. Muller, and B. Rahali, "Does trust mean giving and not risking? experimental evidence from the trust game," Revue d"economie politique, vol. 125, no. 5, pp. 701-716, 2015 [2] R. O. Murphy, K. A. Ackermann, and M. Handgraaf, "Measuring social value orientation," Judgment and Decision Making, vol. 6, no. 8, pp. 771-781, 2011.

Split \$100 with a stranger...

- A. Garapin, L. Muller, and B. Rahali, Does trust mean giving and not risking? experimental evidence from the trust game, Revue d'economie politique, 2015
- R. O. Murphy, K. A. Ackermann, and M. Handgraaf, Measuring social value orientation, Judgment and Decision Making, 2011

Social Value Orientation

human

Social Value Orientation
human

Social Value Orientation

Our Approach

Social Value Orientation

Best Response Game

Learned Rewards

- Behavior model from social psychology

$g_{i}(\cdot)=\cos \varphi_{i} r_{i}+\sin \varphi_{i} r_{j}$
- Weight reward to self vs other
- Each agent maximizes its individual utility
$G_{i}\left(\boldsymbol{x}^{0}, \boldsymbol{u}, \varphi_{i}\right)=\sum_{k=0}^{N-1} g_{i}\left(\boldsymbol{x}^{k}, \boldsymbol{u}^{k}, \varphi_{i}\right)+g_{i}^{N}\left(\boldsymbol{x}^{N}, \varphi_{i}\right)$

$$
\boldsymbol{u}_{i}^{*}=\underset{\boldsymbol{u}_{i}}{\operatorname{argmax}} G_{i}\left(\boldsymbol{x}^{0}, \boldsymbol{u}_{i}, \boldsymbol{u}_{\neg i}, \varphi_{i}\right)
$$

- Solve for Nash Equilibrium
- Inverse Reinforcement Learning
- Calibrate rewards on NGSIM data set

Utility-Maximizing Policy with SVO

- Joint reward weighted by SVO

$$
g_{i}(\cdot)=\cos \varphi_{i} r_{i}+\sin \varphi_{i} r_{j}
$$

- Utility over time horizon

$$
G_{i}\left(\boldsymbol{x}^{0}, \boldsymbol{u}, \varphi_{i}\right)=\sum_{k=0}^{N-1} g_{i}\left(\boldsymbol{x}^{k}, \boldsymbol{u}^{k}, \varphi_{i}\right)+g_{i}^{N}\left(\boldsymbol{x}^{N}, \varphi_{i}\right)
$$

- Find control \boldsymbol{u}_{i}^{*} that maximizes utility

Unprotected Left Turns

The AV must wait for an altruistic driver to yield

Egoistic Merge

Among egoistic drivers, the AV must wait to merge

Prosocial Merge

Prosocial drivers create a gap for the AV to merge

CE

0 O

Estimate SVO online

Estimate SVO of other drivers online

Integrate into motion planner to improve decision-making and predictions

SVO Predictions on NGSIM

SVO Trends in NGSIM dataset

Merging vehicles are more competitive than non merging vehicles ($p<0.002$)

Evaluation of SVO on NGSIM dataset

 Improved prediction with dynamically estimated SVO during merges

Table 1. Relative mean square position error (MSE) between predicted and actual trajectories, as compared to a single-agent planning baseline.

25\% reduced prediction error

What will come first?

Level 5 Autonomy, or
The Flying car?

Conclusions

-Today: self-driving cars at low speed in low complexity environments
-Tomorrow: increased speed and complexity, mobility as a service
-The Future: Pervasive self-driving (flying) cars, pervasive robotics

[^0]: [1] W. B. G. Liebrand and C. G. McClintock, "The ring measure of social values: A computerized procedure for assessing individual differences in information processing and social value orientation,"

