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Problem Statement

A sample point cloud of NuScenes
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Problem Statement

Center location: (X, ¥, Z)

‘/Heading angle: 0

3D Bounding Boxes

B = {by = [Rk, Ik, 2k, dxk, dyk, dzx, Ok, cls] 1o,
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3D Object Detection - A Brief History

And arrived the KITTI 3D Object Detection Evaluation
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Mao et al. "3d object detection for autonomous driving: A review and new outlooks." arXiv (2022).
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3D Object Detection - A Brief History
A question of datasets and benchmarks
Table 1: Datasets for 3D object detection in driving scenarios.
‘ Dataset Year ‘ Size | Real- ‘ LiDAR ‘ Images . Classes | night/rain | Locations ‘ Other data
(hr) | world scans annotations
KITTI [0, ©1] 2012 | 15 Yes 15k 15k 200k 8 No/No Germany -
KAIST 0] 2018 - Yes 8.9k 8.9k Yes 3 Yes/No Korea thermal images
ApolloScape [ 04, 2019 | 100 Yes 20k 144k 475k 6 -/- China -
H3D[1°7] 2019 | 0.77 | Yes 27k 83k 1.IM 8 No/No USA -
Lyft L5 [107] 2019 | 25 Yes 46k 323k 1.3M 9 No/No USA maps
Argoverse [°] 2019 | 0.6 Yes 44k 490k 993k 15 Yes/Yes USA maps
AIODrive [777] 2020 | 6.9 No 250k 250k 26M - Yes/Yes - long-range data
A*3D [207] 2020 | 55 Yes 39 39 230k 7 Yes/Yes SG -
A2D2 7] 2020 - Yes 12.5k 41.3k - 14 -/- Germany -
Cityscapes 3D [77] 2020 - Yes 0 Sk - 8 No/No Germany -
nuScenes [ ] 2020 | 55 Yes 400k 1.4M 1.4M 23 Yes/Yes SG, USA | maps, radar data
‘Waymo Open [250] 2020 | 6.4 Yes 230k IM 12M 4 Yes/Yes USA maps
Cirrus [727] 2021 - Yes 6.2k 6.2k - 8 /- USA long-range data
PandaSet [101] 2021 | 022 | Yes 8.2k 49k 1.3M 28 Yes/Yes USA -
KITTI-360 [1+7] 2021 - Yes 80k 300k 68k 37 -/- Germany -
Argoverse v2 [797] 2021 - Yes - - - 30 Yes/Yes USA maps
ONCE [/ 7] 2021 | 144 Yes M ™ 417K 5 Yes/Yes China -

Mao et al. "3d object detection for autonomous driving: A review and new outlooks." arXiv (2022).
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3D Object Detection - A Brief History

Inspiration from 2D Objects Detection

Net Faster RCNN
Simonyan and Zisserman)  (Ren et al.) YOLO9000

(
NIN (Redmon and Farhadi)

(Linetal.)

Fast RCNN

RCNN GooglLeNet  (Girshick) ResNet RFCN Mask RCNN CornerNet
(Girshick et al.) (Szegedy et al.) (He et a|_2‘o (Dai et al.) (He etal.) (Law and Deng)
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M
DetectorNet

MultiBox MSC Multibox SSD DenseNet RetinaNet
(Szegedy etal) (Eran et al) (Szegedy et al.) (Livetal)  (Huangetal) (Lin etal)
SPPNet YOLO .
Feature Pyramid Network
OverFeat ~ (Meetal) (Redmon et al.) (FPN) (Lin st al)

(Sermanet et al.)
Liu et al. "Deep learning for generic object detection: A survey." 1JCV (2020)
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2D Object Detection - In a Nutshell

Objectness
Classificat

[T centace

: NANTES MultiClass
‘< - Bounding Box
Regressor

Feature Maps;
rojected Region
Proposals

Feature 1,

Extract Features  “yp o

(3,H, W) [x,y, h, w, cls]
Ren et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NeurlPS (2015).
u Feature Extraction using a 2D CNN

m Proposals Generation At each location of Feature Maps, an Region Proposal Network (a small CNN)

* Predict 2k classification scores representing positive/ negative probability of k anchors at this location

* Predict 4k floating values representing difference between k anchors at this location and their associated ground truth
m Proposals Refinement For each positive anchor,

* ROI Pooling to obtain ROI feature vector
* 2 sibling FFN map ROI feature vector to its class probability and its difference w.r.t its ground truth

a review — Vincent Frémont
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Moving to 3D

Image | 2D Object
(C, H, W) | Detection Model

- N A A . N -
P ={pi =[x, i,z fi]}i—1 B = {bi = [&, i, 2, dxi, dyk, dzi, O, clse] Ly

Central question of early 3D Object Detection: computing image-like representation of point clouds

Ry
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Voxel-based Methods - VoxelNet
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Zhou et al. "Voxelnet: End-to-end learning for point cloud based 3d object detection." CVPR (2018).

ions, a review — Vincent Frémont

Lidar-based 3D objection detection using deep learning for




Camera-LiDAR Fusion Practicality of 3D Object D ion Method Concll

Introduction _

Voxel-based Methods - PIXOR

P = {Pl—[Xla}’laznf]};f

Image _ | 2D Object
(C, H, W) | Detection Model

Yang et al. "Pixor: Real-time 3d object detection from point clouds." CVPR (2018).
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Voxel-based Methods - PointPillars

P : {P: - [Xiayl'azh’_fi]}:l'\l:l
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Lang et al. "Pointpillars: Fast ders for object d ion from point clouds." CVPR (2019).
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Voxel-based Methods - Advantages & Drawbacks

= Advantages

* Grid-based representation compatible with the Convolution operators

m Drawbacks
* Information loss due to voxelization
® To be solved by Point-based methods

* Waste computations on empty locations of Bird-Eye View images of point clouds

12\ Lidar-based 3D objection detection using deep learning for ions, a review — Vincent Frémont
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Point-based Methods - PointNet

[ —_— R —_—
sampling &~ pointnet ~ sampling & pointnet
grouping grouping
\ J\ J
Y Y
set abstraction set abstraction
Qi et al. "Poi ++: Deep hi hical feature learning on point sets in a metric space." NeurlPS (2017).

Let xc € R3 denote the location of a point of interest which has N points x;(i = 1, ..., N) in its neighborhood.
f(.y denotes a point feature
fc = FEN (max; FFEN ([f;, x; — xc]))
Set Abstraction ~ Convolution on Set

@ Lidar-based 3D objection detection using deep learning for hicl

a review — Vincent Frémont
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Point-based Methods - PointNet

—_ T . &«
interpolate uni interpolate unit
pomtne pomntnet
Qi et al. "Poi ++: Deep hi hical feature learning on point sets in a metric space." NeurlPS (2017).

Let xc € R3 denote the location of a point of interest which has N points x;(i = 1, ..., N) in its neighborhood.
f(.) denotes a point feature
_ 2iwifi o 1
fc - E’r’ V:/I'l Where Wi = d(mei)p
Feature Propagation Layer ~ Convolution Transpose

Lidar-based 3D objection detection using deep learning for hicl licati a review — Vincent Frémont
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Point-based Methods - PointRCNN

a: Bottom-up 3D Proposal Generation

Point-wise
feature vector

Point cloud representation
of input scene

— Bin-based 3D i
o - fi— Box Generation
S|l 8.
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b: Canonical 3D Box Refinement

Semantic Features

44 &

Merged Features

7 - &

Encoder

Point Cloud

Local Spatial Points

1 -2 -2

Canonical
Transformation

Point Cloud Region PoolingJ

3D boxes of detected objects }

Bin-based 3D
Box Refinement

Confidence
Prediction

Shi et al "Pointrenn: 3d object proposal generation and detection from point cloud." CVPR (2019).

m Point Cloud Encoder = a stack of Set Abstraction Layers
m Point Cloud Decoder = a stack of Feature Propagation Layers

a review — Vincent Frémont
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Point-based Methods - PointFormer

Feature Learning Module

3D Boxes

. - [
p R
’ x o
, <

Lo Local-Giobal Global
Transformer Transformer
Multiscale Cross-Atiention
A Pointormer Block

Pan et al. "3d object detection with pointformer." CVPR (2021).

Let x. € R3 denote the location of a point of interest which has N points x;(i = 1, ..., N) in its neighborhood.
f(.) denotes a point feature
m Set Abstraction Layer:
fc = FFN (max,- FFN ([f,',X,' - Xc]))
m Local Transformer
fl = CrossAttention <fé71; [fi,xi — xc]:\’:1>
* Key: features of neighbor points {f;}f/zl
* Query: features of the point of interest fé calculated by the previous layer /| — 1

) Lidar-based 3D objection detection using deep learning for ions, a review — Vincent Frémont
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Point-based Methods - Advantages & Drawbacks

m Advantages

* Avoiding information loss due to voxelization

* Operating directly on points — suitable for in-door scenes where objects density is high
m Drawbacks

* Information loss due to point cloud subsampling

* Point cloud query ops (furthest points sampling, nearest neighbors query) induces large computational overhead

®m Challenging to meet the real-time requirement on large scale out-door point clouds

1» Lidar-based 3D objection detection using deep learning for ions, a review — Vincent Frémont
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Combining Voxels and Points - PV-RCNN

Shi et al. "Pv-recnn: Point-voxel feature set abstraction for 3d object detection." CVPR (2020).

u Feature Extraction & Proposals Generation by Voxel-based method (VoxelNet)
u Proposals Refinement by Point-based method combined with a 3D version of ROIAlign (He et al. "Mask r-cnn." ICCV (2017))

Key points feature = SetAbstraction (raw points feature)

Grid points feature = SetAbstraction (Key pomts feature)

Grid Point  Key Point Raw Point

la Lidar-based 3D objection detection using deep learning for i ications, a review — Vincent Frémont
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Performance Comparison

NN Voxels WEM Points WEE Voxel-Point NN Voxels WEM Points WEM Voxel-Point

Car AP (Moderate)
8 g
mean AP

8

& $ @vf 4\0 45’ e" @* OA’Q oS
S S
< <O (b(\

(a) KITTI (b) NuScenes
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LiDARs Can’t See Texture

e BAAARASAMS L &7 Y 1
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s
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A collection of groups of points that have similar appearance
How many pedestrians?
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Cameras to The Rescue

Projection of the collection of groups of points onto vehicle's camera

@ Lidar-based 3D objection detection using deep learning for hicl icatil a review — Vincent Frémont
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Taxonomy of Camera-LiDAR Fusion

Annotation Aligning Images and

1 operator Point Clouds
O Metium

Proposals

From
Images

From Point
Clouds

1D where to search
for 3D boxes

Proj 3D proposals
to Images

DETR's Decoding
Scheme

Lifting Images to 3D

Attention louds Volume

Cat. point-wise
features

‘ ‘ Pseudo Point ‘

Rescore 3D
proposals
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3D Proposals - Projecting to Images

30 Proposal Network

ax decony ROI
pooling
IZX decony \
‘Objectness
LIDAR Bird view conv layers Classier
Bird view
(BV)
Proposals
3D Box

Regressor

Region-based Fusion Network

Front view
Proposals Multiclass
4x decony o Classifier
ooling [ ||
P P '8 J
LIDAR Front view osex
gressor
(FV) conv layers
Image

Proposals

ROI
2x deconv, pooling H

Image (RGB) ‘ / J

conv layers

Chen et al. "Multi-view 3d object detection network for autonomous driving." CVPR (2017).

= 3D Proposals are generated in Bird-Eye View (BEV), then projected to: BEV, (LiDAR) Front View, Image
m Proposal’s view-dependent feature is obtained by ROI Pooling based on its projection

@ Lidar-based 3D objection detection using deep learning for

a review — Vincent Frémont
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3D Proposals - DETR’s Decoding Scheme
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Bai et al. "Transfusi Rok lid. a fusion for 3d object detection with transformers." CVPR (2022).
= In LiDAR branch, objects are detected using DETR (carion et al. "End-to-end object detection with transformers." ECCV, (2020). )
. N
* Object Query = {q}"" c Rd}'
i ql-ida' = CrossAttn (qi,-"i', IBEV). IBEY is the pseudo-BEV image computed by PointPillars.

m In Image branch, )
* 2D CNN extracts image features |

. qf“” = CrossAttn (q!-id"’"'7 Ifmg)
u qf”se is decoded into a 3D bounding box by a-shared FFN

. g™ is a learnable vector
1

i=

gy,
( [
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3D Points From Images - Pseudo Point Clouds

LiDAR Stream Sparse Dense Fusion Head

LiDAR Point Cloud Raw Rol Features
: e cs. | Auxilia
I v
< | s
voxehzalm\ reg.
— — — R0| — —
S Fused Rol Features

M s Pseudo Rol Features TS
anrah S cls.
Depth =z Y. ¢ - voxelization ‘SparseConv
by

Completion h ‘:ﬂ CPConvs Miianinsti BN .
’
Color Inu]e1 J/

~pai I_ cls. | Auxiliary
- < rog, | Hoad

Pseudo Stream

Wu et al. "Sparse Fuse Dense: Towards High Quality 3D Detection with Depth Completion." CVPR (2022).
= Feature Extraction & Proposals Generation by Voxel-based backbone (SECOND)
u Proposals Refinement by
* Pooling raw points — voxelize — extract features for voxel grid using Convolution
* Pooling pseudo points — voxelize — extract features for voxel grid using Convolution
* Features FF‘ at location 7 in two voxel grid above are fused by a weighting scheme

(w2, wP™®) = o (MLP (CAT (Fi, FP*9)))
Fi = MLP (CAT (wrawFraw wPseFPse))

@ Lidar-based 3D objection detection using deep learning for hicl ications, a review — Vincent Frémont
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3D Points From Images - Lifting Images to 3D

Camera Feat.
(in BEV)
> > > &2 >
Camera Camera Camera-to-BEV \
Encoder Features View Transform
Multi-View RGB Images
i 7
-
> [O> I > > Lz@
LiDAR LiDAR LiDAR Feat.
Encoder Features a ) (in BEV)

LiDAR Point Cloud

Depth Distributions. Frustum Features.

D, 0) Glu,0)
Image Features
Fu,v)

Sampling Point **

Task-Specific Heads
———

\\

|

BEV Map Segmentation

y-- =

BEV Fused BEV
Encoder Features

Liu et al. "BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird's-Eye View Representation." arXiv (2022).

Lifting images to 3D volume by predicting a categorical depth distribution for every pixel

Vorel Features V

Frustum Features G

Vol Sampiing
Paint

Calbration

Reading et al. "Categorical depth distribution network for monocular 3d object detection." CVPR (2021).

® Image Features F: Wg x HE x C

m Frustum Features G: Wr X HE x D x C

m Voxel Features V: X X Y x Zx C
* (X,Y) are linked to (Wg, Hrp) by camera projection matrix
* Z is linked to D by discretization method (e.g., d = z/dD)

a review — Vincent Frémont
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Performance Comparison
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Accuracy-Speed Tradeoff

W Lidar-Points
Wl Lidar-Voxels
84 BN Fusion . . .
m Dash vertical line shows the real-time

threshold (24 Hz)

< m Performances are reported by their
« respective papers — not tested on the same
v hardware

ol

m Non-exhausting list (most fusion methods
* don't report their inference time)

Car AP (Moderate)
<

Observations:

. m Camera-LiDAR Fusion yields the strongest
performance at the cost of low inference
speed

m Voxel-based methods spread over the entire

- - accuracy/speed spectrum

30 40
Frames Per Second * High accuracy: Voxel Transformer
e POINtRCNN ¥ 3DSSD ¥V HotSpotNet 4 VoxelRCNN v  SA-SSD v MMF < CLOCs . High frame-rate: PointPillars
® STD ® SECOND A CIA-SSD » VoxelTF 4 PointPillars A 3D-CVF » FocalSpConv

* Best balance: Voxel RCNN

Performance of 3D Detectors on KITTI (test) with respect to their
inference speed

10 20

ions, a review — Vincent Frémont
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Impact of Changes in LIiDAR Resolution

Performance of PointRCNN across multiple datasets. The evaluation is performed for class Car only and is measured by AP3p. Best
and worst generalization (domain adaptation) in each setting are marked by red and blue, respectively. In domain performance is
indicated by bold font.

Setting | Source/Target | KITTI Argoverse NuScenes Lyft Waymo

KITTI 84.9 34.7 14.9 54.2 14.0

Argoverse 46.8 63.3 26.9 69.5 44.4

0-30m NuScenes 13.9 26.0 42.8 43.8 43.4
Lyft 45.2 54.0 25.4 88.5 70.9

Waymo 15.0 48.1 24.0 76.2 87.2

KITTI 51.4 19.0 4.5 345 21.4

Argoverse 11.8 39.5 9.1 39.1 42.1

30-50m NuScenes 3.8 6.4 4.1 18.9 29.2
Lyft 16.6 21.8 9.1 62.7 55.5

Waymo 9.3 18.8 9.1 51.4 68.8

KITTI 12.0 3.0 0.0 9.6 12.0

Argoverse 1.3 6.9 0.0 14.5 23.0

30-50m NuScenes 1.5 2.3 9.1 5.3 15.2
Lyft 4.6 3.9 0.0 33.1 27.5

Waymo 1.8 5.6 0.0 21.3 41.1

Wang et al. "Train in germany, test in the usa: Making 3d object detectors generalize." CVPR (2020).

@ Lidar-based 3D objection detection using deep learning for hicl ications, a review — Vincent Frémont
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Robustness to LIDAR Resolution by A Mixture of Datasets

(a) Velodyne-HDLG64 (b) Velodyne-VLP32

(a) 64-channel point cloud comapred to 32-channel

Domain A
© 5 o0

Task A

Domain Z
= o=

for LIDAR d

Rist et al "C deep d

) .
Domain B
oL o 4 Task B
- "= Shared Feature Encoder -

Task Z

(b) Alternating Training Method

and ion." 1V (2019).
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Robustness to LIDAR Resolution by A Mixture of Datasets

Table: Datasets specification

# Annotated Frames

Dataset [# channels] Task
Train Val. Test
KITTI Object (K) [64] Obj. Det. 3712 3769 7518
LiDAR Semantic (S) [32] Sem. Seg. 340 000 12261 22983
LiDAR Multitask (M) [32]  Obj. Det. + Sem. Seg. 1047 226 441

Table: Performance of different pre-training dataset

Multi-task (M)[32]

Pre-train on

Detection AP SemSeg
Hard Mod Easy mloU
No pre-training 60.3 678 69.5 67.0

KITTI Object (K) [64] 724 814 833  46.4
LiDAR Semantic (S) [32] 41.6 476 50.1 69.1
(K) [64] + (S) [32] 74.8 82.0 84.8 69.5

@ Lidar-based 3D objection detection using deep learning for hicl ications, a review — Vincent Frémont
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LiDAR Resolution-Agnostic Object Detection

m Architecture based on PointPillars [Lang et al. CVPR 2010]
m Output inspired from CenterNet [zhou et al. CoRR 2019] and anchor-free

Camera + LiDAR Network

/ RGB Feature Voxels : RGB \
Map features
RGB image l
_,| Image e®
Network = LI d
®g 0

4

pmjecm;n | LIDAR Network

Vioxelization 4.‘@ A=Y
Netwu
Point Cloud
Voxels : 3D Outpuldatsclmns
points
Theodose et al. "A Deep Learning Approach for LIDAR Resolution-A ic Object D ion." T-ITS (2021).
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First Modification: Layers sub-sampling

(a) Original Point Cloud (64 layers) (b) Reduced Point Cloud (28 layers)

@ Lidar-based 3D objection detection using deep learning for aut hicl ications, a review — Vincent Frémont
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Second Modification: Objects Representation

Classical box representation (x,y, w, /,0) to Gaussian Representation N'(u, X) as
e (3 2) e

with

a= , b= , €= y Ow = — - 01 = 7,

cos?(0)  sin%(9) sin(20)  sin(20) sin2(0)  cos?(9) w /
b=— = o =
202 20/2 402 40'/2 202 20’,2

Loss Function Regression part:
= (x,y): Smooth L1

0.5(xXpred — Xgt)> i [Xpred — Xgt| < 1
f _ pre g pred -4
(Xpred Xgt) { [Xpred — Xgt| — 0.5  otherwise

m (w,/,0): simplified Bhattacharyya distance

detX s — zpred + th

VdetT g detT, 2

DB(zpredvzgt) =In
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Results

Table: Evaluation for BEV detection on the KITTI validation set, nuScenes Mini and Pandaset datasets. Results in Average Precision (%). The last
number in dataset identifier indicates the loU threshold used for computing the scores.

Exp. ID KITTI 64 layers 0.7 KITTI 8 layers 0.7 nuScenes Pandaset Mean
Easy ModerateHard | Easy Moderatdard | 0.5 0.5 Datasets
#1 CL-64-Std 75.02 59.22 54.71 41.81 29.48 27.29 9.09 11.26 29.04
#2 CL-64-G 72.07 53.10 53.31 42.11 29.59 27.47 9.09 15.31 29.23
#3 CL-Var-Std 77.46 58.49 54.50 61.57 40.46 38.83 15.65 14.39 35.11
#4 CL-Var-G 70.18 51.90 52.55 57.14 38.61 36.34 16.61 7.41 31.56
#5 CL-8-Std 71.55 58.72 54.57 65.30 46.96 41.10 16.26 4.73 33.43
#6 CL-8-G 65.55 48.19 47.92 64.34 45.12 40.06 16.35 9.09 32.29
#7 L-64-Std 85.35 75.16 71.13 27.55 20.95 18.21 37.69 49.35 46.62
#8 L-64-G 84.93 75.02 71.59 27.21 18.99 16.62 50.12 52.63 50.21
#9 L-Var-Std 86.46 75.69 74.43 58.61 40.34 35.81 47.86 49.00 55.16
#10 L-Var-G 85.90 75.45 72.30 58.16 40.56 35.48 66.91 52.26 60.44
#11 L-8-Std 48.54 44.18 44.53 67.65 48.26 43.62 55.04 16.82 42.69
#12 L-8-G 43.85 42.18 41.95 66.32 47.18 42.83 44.43 11.58 37.69
PointPillars 89.65 87.17 84.37 46.99 32.34 27.85 29.38 30.47 45.66
PV-RCNN 90.26 88.04 87.39 40.02 28.66 26.48 32.96 39.73 48.24

The CL-experiments run at 35 ms and the L-experiments run at 20 ms on a computer equipped with a GPU NVidia 1080Ti and a CPU Intel Core
i7—7700K.
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Robustness to LIDAR Resolution by Standardizing the Number of Points

SOTA Detector -

g A
—————» TRAN —> d"?

Tsai et al. "See Eye to Eye: A Lidar-A ic 3D D ion F k for Unsupervised Multi-Target Domain Adaptation." RA-L (2022).

m Densify point clouds of target domain so that they have the same number of points as source domain’s
* Isolating object points using projection of 3D points to image and instance masks (e.g., by MaskRCNN)
¢ Surface Completion using the resulting object points and Ball-Pivoting algorithm
* Sampling more points from the resulting surface using Poisson Disk Sampling
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Conclusion and Perspectives

m Methods for building representation of point clouds for 3D object detection:
* Voxel based
* Point based
* Voxel-Point based
* Perspective: Inference time vs precision

m Central question of Camera-LiDAR fusion - aligning two modalities and methods to solve this
* Using 3D points from either Point Clouds or Images
® Using 3D or 2D or both proposals
* Perspective: Point cloud densification approaches. What about fusion with other modalities and multi-modal dataset?

m Practicality of 3D object detection methods

® Accuracy-speed tradeoff

* Robustness to LiIDARSs' resolution and domain adaptation

* Perspectives:
m Efficient hardware design for 3D object detection and new evaluation metrics.
® Detection with stronger interpretability.
® Learning 3D detectors from the feedback of planners
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Thank you for your attention

Questions?
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