

Lidar-based 3D objection detection using deep learning for autonomous vehicles applications, a review

Vincent Frémont

Workshop PPNIV 2022 - Vincent Frémont

October 23th, 2022, Kyoto, Japan

Problem Statement

Problem Statement

Lidar-based 3D objection detection using deep learning for autonomous vehicles applications, a review - Vincent Frémont

Introduction	Background	Camera-LiDAR Fusion	Practicality of 3D Object Detection Methods	Conclusion	
Outline					

Presentation Outline

- Introduction
- Background
- Camera-LiDAR Fusion
- Practicality of 3D Object Detection Methods
- Point Cloud Densification
- Conclusion

... And arrived the KITTI 3D Object Detection Evaluation

Introduction

3D Object Detection - A Brief History

A question of datasets and benchmarks

Dataset	Year	Size (hr.)	Real- world	LiDAR scans	Images	3D annotations	Classes	night/rain	Locations	Other data
KITTI [80, 81]	2012	1.5	Yes	15k	15k	200k	8	No/No	Germany	-
KAIST [50]	2018	-	Yes	8.9k	8.9k	Yes	3	Yes/No	Korea	thermal images
ApolloScape [104, 166]	2019	100	Yes	20k	144k	475k	6	-/-	China	-
H3D [198]	2019	0.77	Yes	27k	83k	1.1M	8	No/No	USA	-
Lyft L5 [107]	2019	2.5	Yes	46k	323k	1.3M	9	No/No	USA	maps
Argoverse [29]	2019	0.6	Yes	44k	490k	993k	15	Yes/Yes	USA	maps
AIODrive [293]	2020	6.9	No	250k	250k	26M	-	Yes/Yes	-	long-range data
A*3D [202]	2020	55	Yes	39k	39k	230k	7	Yes/Yes	SG	-
A2D2 [82]	2020	-	Yes	12.5k	41.3k	-	14	-/-	Germany	-
Cityscapes 3D [77]	2020	-	Yes	0	5k	-	8	No/No	Germany	-
nuScenes [15]	2020	5.5	Yes	400k	1.4M	1.4M	23	Yes/Yes	SG, USA	maps, radar data
Waymo Open [250]	2020	6.4	Yes	230k	1M	12M	4	Yes/Yes	USA	maps
Cirrus [288]	2021	-	Yes	6.2k	6.2k	-	8	-/-	USA	long-range data
PandaSet [301]	2021	0.22	Yes	8.2k	49k	1.3M	28	Yes/Yes	USA	-
KITTI-360 [142]	2021	-	Yes	80k	300k	68k	37	-/-	Germany	-
Argoverse v2 [295]	2021	-	Yes	-	-	-	30	Yes/Yes	USA	maps
ONCE [172]	2021	144	Yes	1M	7M	417K	5	Yes/Yes	China	-

Table 1: Datasets for 3D object detection in driving scenarios.

Mao et al. "3d object detection for autonomous driving: A review and new outlooks." arXiv (2022).

Inspiration from 2D Objects Detection

Liu et al. "Deep learning for generic object detection: A survey." IJCV (2020)

(3, H, W)

[x, y, h, w, cls]

Ren et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NeurIPS (2015).

■ Feature Extraction using a 2D CNN

7

Proposals Generation At each location of Feature Maps, an Region Proposal Network (a small CNN)

- Predict 2k classification scores representing positive/ negative probability of k anchors at this location
- Predict 4k floating values representing difference between k anchors at this location and their associated ground truth
- Proposals Refinement For each *positive* anchor,
 - ROI Pooling to obtain ROI feature vector
 - 2 sibling FFN map ROI feature vector to its class probability and its difference w.r.t its ground truth

Central question of early 3D Object Detection: computing image-like representation of point clouds

Introduction	Background	Camera-LiDAR Fusion	Practicality of 3D Object Detection Methods	Conclusion	
Voxel-based	Method	ls - Advantages &	Drawbacks		

Advantages

· Grid-based representation compatible with the Convolution operators

Drawbacks

- Information loss due to voxelization
 - To be solved by Point-based methods
- · Waste computations on empty locations of Bird-Eye View images of point clouds

Qi et al. "Pointnet++: Deep hierarchical feature learning on point sets in a metric space." NeurIPS (2017).

Let $x_c \in \mathbb{R}^3$ denote the location of a point of interest which has N points $x_i (i = 1, ..., N)$ in its neighborhood. $f_{(.)}$ denotes a point feature

$$f_c = FFN (max_i FFN ([f_i, x_i - x_c]))$$

Set Abstraction ~ Convolution on Se

Qi et al. "Pointnet++: Deep hierarchical feature learning on point sets in a metric space." NeurIPS (2017).

Let $x_c \in \mathbb{R}^3$ denote the location of a point of interest which has N points $x_i (i = 1, ..., N)$ in its neighborhood. $f_{(\cdot)}$ denotes a point feature

$${\sf f}_c = rac{\sum_i w_i {\sf f}_i}{\sum_i w_i}$$
 where $w_i = rac{1}{d({\sf x}_c, {\sf x}_i)^p}$
Feature Propagation Layer \sim Convolution Transpose

Point-based Methods - PointRCNN

Shi et al "Pointrenn: 3d object proposal generation and detection from point cloud." CVPR (2019).

- \blacksquare Point Cloud Encoder \equiv a stack of Set Abstraction Layers
- \blacksquare Point Cloud Decoder \equiv a stack of Feature Propagation Layers

Let $x_c \in \mathbb{R}^3$ denote the location of a point of interest which has N points $x_i (i = 1, ..., N)$ in its neighborhood. $f_{(.)}$ denotes a point feature

Multiscale Cross-Attention

Local-Global

Pan et al. "3d object detection with pointformer." CVPR (2021).

Transforme

Set Abstraction Laver:

$$f_c = FFN (max_i FFN ([f_i, x_i - x_c]))$$

Global Transforme

A Pointformer Block

Local Transformer

$$\mathbf{f}_{c}^{\prime} = \text{CrossAttention} \left(\mathbf{f}_{c}^{\prime-1}; [\mathbf{f}_{i}, \mathsf{x}_{i} - \mathsf{x}_{c}]_{i=1}^{N} \right)$$

- Key: features of neighbor points $\{f_i\}_{i=1}^N$
- Query: features of the point of interest f_c^l calculated by the previous layer l-1

Advantages

- Avoiding information loss due to voxelization
- * Operating directly on points ightarrow suitable for in-door scenes where objects density is high

Drawbacks

17)

- Information loss due to point cloud subsampling
- Point cloud query ops (furthest points sampling, nearest neighbors query) induces large computational overhead
 - Challenging to meet the real-time requirement on large scale out-door point clouds

Shi et al. "Pv-rcnn: Point-voxel feature set abstraction for 3d object detection." CVPR (2020).

Feature Extraction & Proposals Generation by Voxel-based method (VoxelNet)

18)

Proposals Refinement by Point-based method combined with a 3D version of ROIAlign (He et al. "Mask r-cnn." ICCV (2017))

Key points feature = SetAbstraction (raw points feature)

Grid points feature = SetAbstraction (Key points feature)

LiDARs Can't See Texture

Projection of the collection of groups of points onto vehicle's camera

3D Proposals - Projecting to Images

23

3D Proposals are generated in Bird-Eye View (BEV), then projected to: BEV, (LiDAR) Front View, Image
 Proposal's view-dependent feature is obtained by ROI Pooling based on its projection

3D Proposals - DETR's Decoding Scheme

Bai et al. "Transfusion: Robust lidar-camera fusion for 3d object detection with transformers." CVPR (2022).

In LiDAR branch, objects are detected using DETR (Carion et al. "End-to-end object detection with transformers." ECCV, (2020).)

• Object Query = $\left\{q_{i}^{init} \in \mathbb{R}^{d}\right\}_{i=1}^{N}$. q_{i}^{init} is a learnable vector • $q_{i}^{lidar} = CrossAttn\left(q_{i}^{init}, I^{BEV}\right)$. I^{BEV} is the pseudo-BEV image computed by PointPillars.

In Image branch,

2D CNN extracts image features I^{img}

•
$$q_i^{fuse} = CrossAttn \left(q_i^{lidar}, I^{img} \right)$$

■ q^{fuse} is decoded into a 3D bounding box by a-shared FFN

3D Points From Images - Pseudo Point Clouds

Wu et al. "Sparse Fuse Dense: Towards High Quality 3D Detection with Depth Completion." CVPR (2022).

Feature Extraction & Proposals Generation by Voxel-based backbone (SECOND)

Proposals Refinement by

- Pooling raw points ightarrow voxelize ightarrow extract features for voxel grid using Convolution
- $\bullet\,$ Pooling pseudo points $\rightarrow\,$ voxelize $\rightarrow\,$ extract features for voxel grid using Convolution
- Features F_i^{\Box} at location *i* in two voxel grid above are fused by a weighting scheme

Liu et al. "BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird's-Eye View Representation." arXiv (2022). Lifting images to 3D volume by predicting a categorical depth distribution for every pixel

Reading et al. "Categorical depth distribution network for monocular 3d object detection." CVPR (2021).

- Image Features F: $W_F \times H_F \times C$
- Frustum Features G: $W_F \times H_F \times D \times C$
- Voxel Features V: $X \times Y \times Z \times C$

- (X, Y) are linked to (W_F, H_F) by camera projection matrix
- Z is linked to D by discretization method (e.g., $d = z/\delta D$)

Performance of 3D Detectors on KITTI (test) with respect to their inference speed

- Dash vertical line shows the real-time threshold (24 Hz)
- \blacksquare Performances are reported by their respective papers \rightarrow not tested on the same hardware
- Non-exhausting list (most fusion methods don't report their inference time)

Observations:

- Camera-LiDAR Fusion yields the strongest performance at the cost of low inference speed
- Voxel-based methods spread over the entire accuracy/speed spectrum
 - High accuracy: Voxel Transformer
 - High frame-rate: PointPillars
 - Best balance: Voxel RCNN

Conclusion

Impact of Changes in LiDAR Resolution

Background

Performance of PointRCNN across multiple datasets. The evaluation is performed for **class Car** only and is measured by AP_{3D} . Best and worst generalization (domain adaptation) in each setting are marked by red and blue, respectively. In domain performance is indicated by **bold** font.

Setting	Source/Target	ΚΙΤΤΙ	Argoverse	NuScenes	Lyft	Waymo
	KITTI	84.9	34.7	14.9	54.2	14.0
	Argoverse	46.8	63.3	26.9	69.5	44.4
0-30m	NuScenes	13.9	26.0	42.8	43.8	43.4
	Lyft	45.2	54.0	25.4	88.5	70.9
	Waymo	15.0	48.1	24.0	76.2	87.2
	КІТТІ	51.4	19.0	4.5	34.5	21.4
	Argoverse	11.8	39.5	9.1	39.1	42.1
30-50m	NuScenes	3.8	6.4	4.1	18.9	29.2
	Lyft	16.6	21.8	9.1	62.7	55.5
	Waymo	9.3	18.8	9.1	51.4	68.8
	KITTI	12.0	3.0	0.0	9.6	12.0
30-50m	Argoverse	1.3	6.9	0.0	14.5	23.0
	NuScenes	1.5	2.3	9.1	5.3	15.2
	Lyft	4.6	3.9	0.0	33.1	27.5
	Waymo	1.8	5.6	0.0	21.3	41.1

Wang et al. "Train in germany, test in the usa: Making 3d object detectors generalize." CVPR (2020).

Lidar-based 3D objection detection using deep learning for autonomous vehicles applications, a review - Vincent Frémont

30

Background

Robustness to LiDAR Resolution by A Mixture of Datasets

(a) 64-channel point cloud comapred to 32-channel

Rist et al "Cross-sensor deep domain adaptation for LiDAR detection and segmentation." IV (2019).

31

Background

.

Robustness to LiDAR Resolution by A Mixture of Datasets

Table: Datasets specification

Dataset [# channels]	Task	# Annotated Frames		
		Train Val. Te		Test
KITTI Object (K) [64]	Obj. Det.	3712	3769	7518
LiDAR Semantic (S) [32]	Sem. Seg.	340 000	12 261	22 983
LiDAR Multitask (M) [32]	Obj. Det. + Sem. Seg.	1047	226	441

Table: Performance of different pre-training dataset

_	Multi-task (M)[32]					
Pre-train on	De	tection /	AP	SemSeg		
	Hard	Mod	Easy	mloU		
No pre-training	60.3	67.8	69.5	67.0		
KITTI Object (K) [64]	72.4	81.4	83.3	46.4		
LiDAR Semantic (S) [32]	41.6	47.6	50.1	69.1		
(\mathbf{K}) [64] + (\mathbf{S}) [32]	74.8	82.0	84.8	69.5		

LiDAR Resolution-Agnostic Object Detection

Architecture based on PointPillars [Lang et al. CVPR 2019]

(32)

■ Output inspired from CenterNet [Zhou et al. CoRR 2019] and anchor-free

Theodose et al. "A Deep Learning Approach for LiDAR Resolution-Agnostic Object Detection." T-ITS (2021).

(a) Original Point Cloud (64 layers)

(b) Reduced Point Cloud (28 layers)

 Introduction
 Background
 Camera-LiDAR Fusion
 Practicality of 3D Object Detection Methods
 Conclusion

 Second Modification:
 Objects Representation
 Conclusion
 Conclusion
 Conclusion

Classical box representation (x, y, w, l, θ) to Gaussian Representation $\mathcal{N}(\mu, \Sigma)$ as

$$\mu = [x, y]^T \in \mathbb{R}^2, \Sigma = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \in \mathbb{R}^{2 \times 2}$$

with

$$a = \frac{\cos^2(\theta)}{2\sigma_w^2} + \frac{\sin^2(\theta)}{2\sigma_l^2}, \ b = -\frac{\sin(2\theta)}{4\sigma_w^2} + \frac{\sin(2\theta)}{4\sigma_l^2}, \ c = \frac{\sin^2(\theta)}{2\sigma_w^2} + \frac{\cos^2(\theta)}{2\sigma_l^2}, \ \sigma_w = \frac{w}{3}, \ \sigma_l = \frac{l}{3}$$

Loss Function Regression part:

■ (*x*, *y*): Smooth L1

$$f(x_{pred}, x_{gt}) = \left\{ egin{array}{cc} 0.5(x_{pred} - x_{gt})^2 & ext{if } |x_{pred} - x_{gt}| < 1 \ |x_{pred} - x_{gt}| - 0.5 & ext{otherwise} \end{array}
ight.$$

 (w, I, θ) : simplified Bhattacharyya distance

$$D_B(\Sigma_{pred}, \Sigma_{gt}) = \ln rac{\det \Sigma}{\sqrt{\det \Sigma_{pred} \det \Sigma_{gt}}}, \Sigma = rac{\Sigma_{pred} + \Sigma_{gt}}{2}$$

Introduction	Background	Camera-LiDAR Fusion	Practicality of 3D Object Detection Methods	Conclusion
Results				

Table: Evaluation for BEV detection on the KITTI validation set, nuScenes Mini and Pandaset datasets. Results in Average Precision (%). The last number in dataset identifier indicates the IoU threshold used for computing the scores.

Exp. ID	KITTI 64 layers 0.7 Easy Moderate Hard	KITTI 8 layers 0.7 nuScenes Easy ModerateHard 0.5	Pandaset Mean 0.5 Datasets
$ \begin{array}{c} \#1 \\ \underline{\text{CL-64-Std}} \\ \#2 \\ \underline{\text{CL-64-G}} \\ \#3 \\ \underline{\text{CL-Var-Std}} \\ \#4 \\ \underline{\text{CL-Var-G}} \\ \#5 \\ \underline{\text{CL-8-Std}} \\ \#6 \\ \underline{\text{CL-8-G}} \end{array} $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		11.26 29.04 15.31 29.23 14.39 35.11 7.41 31.56 4.73 33.43 9.09 32.29
#7 <u>L-64-Std</u> #8 <u>L-64-G</u> #9 <u>L-Var-Std</u> #10 <u>L-Var-G</u> #11 <u>L-8-Std</u> #12 <u>L-8-G</u>	85.35 75.16 71.13 84.93 75.02 71.59 86.46 75.69 74.43 85.90 75.45 72.30 48.54 44.18 44.53 43.85 42.18 41.95	27.55 20.95 18.21 37.69 27.21 18.99 16.62 50.12 58.61 40.34 35.81 47.86 58.16 40.56 35.48 66.91 67.65 48.26 43.62 55.04 66.32 47.18 42.83 44.43	49.35 46.62 52.63 50.21 49.00 55.16 52.26 60.44 16.82 42.69 11.58 37.69
PointPillars PV-RCNN	89.65 87.17 84.37 90.26 88.04 87.39	46.99 32.34 27.85 29.38 40.02 28.66 26.48 32.96	30.47 45.66 39.73 48.24

The <u>CL</u>-experiments run at 35 ms and the <u>L</u>-experiments run at 20 ms on a computer equipped with a GPU NVidia 1080Ti and a CPU Intel Core i7-7700K.

(36)

Robustness to LiDAR Resolution by Standardizing the Number of Points

Tsai et al. "See Eye to Eye: A Lidar-Agnostic 3D Detection Framework for Unsupervised Multi-Target Domain Adaptation." RA-L (2022).

Densify point clouds of target domain so that they have the same number of points as source domain's

- Isolating object points using projection of 3D points to image and instance masks (e.g., by MaskRCNN)
- Surface Completion using the resulting object points and Ball-Pivoting algorithm
- · Sampling more points from the resulting surface using Poisson Disk Sampling

Introduction	Background	Camera-LiDAR Fusion	Practicality of 3D Object Detection Methods	Conclusion	
Conclusion	and Pers	pectives			

- Methods for building representation of point clouds for 3D object detection:
 - Voxel based
 - Point based
 - Voxel-Point based
 - · Perspective: Inference time vs precision
- Central question of Camera-LiDAR fusion aligning two modalities and methods to solve this
 - Using 3D points from either Point Clouds or Images
 - Using 3D or 2D or both proposals
 - Perspective: Point cloud densification approaches. What about fusion with other modalities and multi-modal dataset?
- Practicality of 3D object detection methods
 - Accuracy-speed tradeoff
 - Robustness to LiDARs' resolution and domain adaptation
 - Perspectives:

(37)

- Efficient hardware design for 3D object detection and new evaluation metrics.
- Detection with stronger interpretability.
- Learning 3D detectors from the feedback of planners

Thank you for your attention

Questions?

Acknowledgments to my PhD student Minh-Quan DAO for his contribution to this presentation

