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Problem Statement

A sample point cloud of NuScenes

P = {pi = [xi , yi , zi , fi ]}Ni=1
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Problem Statement

3D Bounding Boxes

B = {bk = [x̂k , ŷk , ẑk , dxk , dyk , dzk , θk , clsk ]}Mk=1
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3D Object Detection - A Brief History

... And arrived the KITTI 3D Object Detection Evaluation
KITTI


Object 3D

Mao et al. "3d object detection for autonomous driving: A review and new outlooks." arXiv (2022).
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3D Object Detection - A Brief History

A question of datasets and benchmarks

Mao et al. "3d object detection for autonomous driving: A review and new outlooks." arXiv (2022).
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3D Object Detection - A Brief History

Inspiration from 2D Objects Detection

Liu et al. "Deep learning for generic object detection: A survey." IJCV (2020)
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2D Object Detection - In a Nutshell

(3, H, W) [x, y, h, w, cls]

Ren et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NeurIPS (2015).

Feature Extraction using a 2D CNN

Proposals Generation At each location of Feature Maps, an Region Proposal Network (a small CNN)
• Predict 2k classification scores representing positive/ negative probability of k anchors at this location
• Predict 4k floating values representing difference between k anchors at this location and their associated ground truth

Proposals Refinement For each positive anchor,
• ROI Pooling to obtain ROI feature vector
• 2 sibling FFN map ROI feature vector to its class probability and its difference w.r.t its ground truth
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Moving to 3D

2D Object
Detection Model

Image

(C, H, W)

Central question of early 3D Object Detection: computing image-like representation of point clouds
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Voxel-based Methods - VoxelNet

2D Object
Detection Model

Image

(C, H, W)

C*

Zhou et al. "Voxelnet: End-to-end learning for point cloud based 3d object detection." CVPR (2018).
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Voxel-based Methods - PIXOR

2D Object
Detection Model

Image

(C, H, W)

Yang et al. "Pixor: Real-time 3d object detection from point clouds." CVPR (2018).
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Voxel-based Methods - PointPillars

2D Object
Detection Model

Image

(C, H, W)

C*

Lang et al. "Pointpillars: Fast encoders for object detection from point clouds." CVPR (2019).
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Voxel-based Methods - Advantages & Drawbacks

Advantages

• Grid-based representation compatible with the Convolution operators

Drawbacks

• Information loss due to voxelization

To be solved by Point-based methods

• Waste computations on empty locations of Bird-Eye View images of point clouds
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Point-based Methods - PointNet

Qi et al. "Pointnet++: Deep hierarchical feature learning on point sets in a metric space." NeurIPS (2017).

Let xc ∈ R3 denote the location of a point of interest which has N points xi (i = 1, ...,N) in its neighborhood.
f(·) denotes a point feature

fc = FFN (maxi FFN ([fi , xi − xc ]))
Set Abstraction ∼ Convolution on Set
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Point-based Methods - PointNet

Qi et al. "Pointnet++: Deep hierarchical feature learning on point sets in a metric space." NeurIPS (2017).

Let xc ∈ R3 denote the location of a point of interest which has N points xi (i = 1, ...,N) in its neighborhood.
f(·) denotes a point feature

fc =
∑

i wi fi∑
i wi

where wi = 1
d(xc ,xi )p

Feature Propagation Layer ∼ Convolution Transpose
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Point-based Methods - PointRCNN

Shi et al "Pointrcnn: 3d object proposal generation and detection from point cloud." CVPR (2019).

Point Cloud Encoder ≡ a stack of Set Abstraction Layers
Point Cloud Decoder ≡ a stack of Feature Propagation Layers
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Point-based Methods - PointFormer

Pan et al. "3d object detection with pointformer." CVPR (2021).

Let xc ∈ R3 denote the location of a point of interest which has N points xi (i = 1, ...,N) in its neighborhood.
f(·) denotes a point feature

Set Abstraction Layer:
fc = FFN (maxi FFN ([fi , xi − xc ]))

Local Transformer
f lc = CrossAttention

(
f l−1
c ; [fi , xi − xc ]Ni=1

)
• Key: features of neighbor points {fi}Ni=1
• Query: features of the point of interest f lc calculated by the previous layer l − 1
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Point-based Methods - Advantages & Drawbacks

Advantages

• Avoiding information loss due to voxelization

• Operating directly on points → suitable for in-door scenes where objects density is high

Drawbacks

• Information loss due to point cloud subsampling

• Point cloud query ops (furthest points sampling, nearest neighbors query) induces large computational overhead

Challenging to meet the real-time requirement on large scale out-door point clouds

Lidar-based 3D objection detection using deep learning for autonomous vehicles applications, a review – Vincent Frémont17



Introduction Background Camera-LiDAR Fusion Practicality of 3D Object Detection Methods Conclusion

Combining Voxels and Points - PV-RCNN

Shi et al. "Pv-rcnn: Point-voxel feature set abstraction for 3d object detection." CVPR (2020).

Feature Extraction & Proposals Generation by Voxel-based method (VoxelNet)
Proposals Refinement by Point-based method combined with a 3D version of ROIAlign (He et al. "Mask r-cnn." ICCV (2017))

Key points feature = SetAbstraction (raw points feature)

Grid points feature = SetAbstraction (Key points feature)
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Performance Comparison
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LiDARs Can’t See Texture

A collection of groups of points that have similar appearance
How many pedestrians?
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Cameras to The Rescue

Projection of the collection of groups of points onto vehicle’s camera
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Taxonomy of Camera-LiDAR Fusion

Aligning Images and
Point Clouds

From Point
Clouds

From
Images

Cat. point-wise 

features Attention Pseudo Point 


Clouds
Lifting Images to 3D

Volume

Operator

Medium

Annotation:

3D Points Proposals

2D

ID where to search
for 3D boxes

3D

Proj 3D proposals 

to Images

DETR's Decoding
Scheme

3D+2D

Rescore 3D
proposals
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3D Proposals - Projecting to Images

Chen et al. "Multi-view 3d object detection network for autonomous driving." CVPR (2017).

3D Proposals are generated in Bird-Eye View (BEV), then projected to: BEV, (LiDAR) Front View, Image
Proposal’s view-dependent feature is obtained by ROI Pooling based on its projection
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3D Proposals - DETR’s Decoding Scheme

Bai et al. "Transfusion: Robust lidar-camera fusion for 3d object detection with transformers." CVPR (2022).

In LiDAR branch, objects are detected using DETR (Carion et al. "End-to-end object detection with transformers." ECCV, (2020). )
• Object Query =

{
qiniti ∈ Rd

}N

i=1
. qiniti is a learnable vector

• qlidari = CrossAttn
(
qiniti , IBEV

)
. IBEV is the pseudo-BEV image computed by PointPillars.

In Image branch,
• 2D CNN extracts image features Iimg

• qfusei = CrossAttn
(
qlidari , Iimg

)
qfusei is decoded into a 3D bounding box by a-shared FFN
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3D Points From Images - Pseudo Point Clouds

Wu et al. "Sparse Fuse Dense: Towards High Quality 3D Detection with Depth Completion." CVPR (2022).

Feature Extraction & Proposals Generation by Voxel-based backbone (SECOND)
Proposals Refinement by

• Pooling raw points → voxelize → extract features for voxel grid using Convolution
• Pooling pseudo points → voxelize → extract features for voxel grid using Convolution
• Features F�

i at location i in two voxel grid above are fused by a weighting scheme(
w raw
i ,wpse

i

)
= σ

(
MLP

(
CAT

(
Frawi ,Fpsei

)))
Fi = MLP

(
CAT

(
w raw
i Frawi ,wpse

i Fpsei

))
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3D Points From Images - Lifting Images to 3D

Liu et al. "BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird’s-Eye View Representation." arXiv (2022).

Lifting images to 3D volume by predicting a categorical depth distribution for every pixel

Reading et al. "Categorical depth distribution network for monocular 3d object detection." CVPR (2021).

Image Features F: WF × HF × C
Frustum Features G: WF × HF × D × C
Voxel Features V: X × Y × Z × C

• (X ,Y ) are linked to (WF ,HF ) by camera projection matrix
• Z is linked to D by discretization method (e.g., d = z/δD)
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Performance Comparison
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Accuracy-Speed Tradeoff
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Performance of 3D Detectors on KITTI (test) with respect to their
inference speed

Dash vertical line shows the real-time
threshold (24 Hz)

Performances are reported by their
respective papers → not tested on the same
hardware

Non-exhausting list (most fusion methods
don’t report their inference time)

Observations:

Camera-LiDAR Fusion yields the strongest
performance at the cost of low inference
speed
Voxel-based methods spread over the entire
accuracy/speed spectrum

• High accuracy: Voxel Transformer
• High frame-rate: PointPillars
• Best balance: Voxel RCNN
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Impact of Changes in LiDAR Resolution
Performance of PointRCNN across multiple datasets. The evaluation is performed for class Car only and is measured by AP3D . Best
and worst generalization (domain adaptation) in each setting are marked by red and blue, respectively. In domain performance is
indicated by bold font.

Setting Source/Target KITTI Argoverse NuScenes Lyft Waymo

0-30m

KITTI 84.9 34.7 14.9 54.2 14.0
Argoverse 46.8 63.3 26.9 69.5 44.4
NuScenes 13.9 26.0 42.8 43.8 43.4

Lyft 45.2 54.0 25.4 88.5 70.9
Waymo 15.0 48.1 24.0 76.2 87.2

30-50m

KITTI 51.4 19.0 4.5 34.5 21.4
Argoverse 11.8 39.5 9.1 39.1 42.1
NuScenes 3.8 6.4 4.1 18.9 29.2

Lyft 16.6 21.8 9.1 62.7 55.5
Waymo 9.3 18.8 9.1 51.4 68.8

30-50m

KITTI 12.0 3.0 0.0 9.6 12.0
Argoverse 1.3 6.9 0.0 14.5 23.0
NuScenes 1.5 2.3 9.1 5.3 15.2

Lyft 4.6 3.9 0.0 33.1 27.5
Waymo 1.8 5.6 0.0 21.3 41.1

Wang et al. "Train in germany, test in the usa: Making 3d object detectors generalize." CVPR (2020).
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Robustness to LiDAR Resolution by A Mixture of Datasets

(a) 64-channel point cloud comapred to 32-channel (b) Alternating Training Method

Rist et al "Cross-sensor deep domain adaptation for LiDAR detection and segmentation." IV (2019).
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Robustness to LiDAR Resolution by A Mixture of Datasets

Table: Datasets specification

Dataset [# channels] Task # Annotated Frames

Train Val. Test

KITTI Object (K) [64] Obj. Det. 3712 3769 7518
LiDAR Semantic (S) [32] Sem. Seg. 340 000 12 261 22 983
LiDAR Multitask (M) [32] Obj. Det. + Sem. Seg. 1047 226 441

Table: Performance of different pre-training dataset

Pre-train on
Multi-task (M)[32]

Detection AP SemSeg
Hard Mod Easy mIoU

No pre-training 60.3 67.8 69.5 67.0
KITTI Object (K) [64] 72.4 81.4 83.3 46.4

LiDAR Semantic (S) [32] 41.6 47.6 50.1 69.1
(K) [64] + (S) [32] 74.8 82.0 84.8 69.5
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LiDAR Resolution-Agnostic Object Detection

Architecture based on PointPillars [Lang et al. CVPR 2019]

Output inspired from CenterNet [Zhou et al. CoRR 2019] and anchor-free

Theodose et al. "A Deep Learning Approach for LiDAR Resolution-Agnostic Object Detection." T-ITS (2021).
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First Modification: Layers sub-sampling

(a) Original Point Cloud (64 layers) (b) Reduced Point Cloud (28 layers)

Lidar-based 3D objection detection using deep learning for autonomous vehicles applications, a review – Vincent Frémont33
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Second Modification: Objects Representation

Classical box representation (x , y ,w , l , θ) to Gaussian Representation N (µ, Σ) as

µ = [x , y ]T ∈ R2,Σ =

(
a b
b c

)
∈ R2×2

with

a =
cos2(θ)

2σ2w
+

sin2(θ)

2σ2l
, b = −

sin(2θ)

4σ2w
+

sin(2θ)

4σ2l
, c =

sin2(θ)

2σ2w
+

cos2(θ)

2σ2l
, σw =

w

3
, σl =

l

3
,

Loss Function Regression part:
(x , y): Smooth L1

f (xpred , xgt) =

{
0.5(xpred − xgt)

2 if |xpred − xgt | < 1
|xpred − xgt | − 0.5 otherwise

(w , l , θ): simplified Bhattacharyya distance

DB(Σpred ,Σgt) = ln
det Σ√

det Σpred det Σgt
,Σ =

Σpred + Σgt

2
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Results

Table: Evaluation for BEV detection on the KITTI validation set, nuScenes Mini and Pandaset datasets. Results in Average Precision (%). The last
number in dataset identifier indicates the IoU threshold used for computing the scores.

Exp. ID KITTI 64 layers 0.7 KITTI 8 layers 0.7 nuScenes Pandaset Mean
Easy ModerateHard Easy ModerateHard 0.5 0.5 Datasets

#1 CL-64-Std 75.02 59.22 54.71 41.81 29.48 27.29 9.09 11.26 29.04
#2 CL-64-G 72.07 53.10 53.31 42.11 29.59 27.47 9.09 15.31 29.23
#3 CL-Var-Std 77.46 58.49 54.50 61.57 40.46 38.83 15.65 14.39 35.11
#4 CL-Var-G 70.18 51.90 52.55 57.14 38.61 36.34 16.61 7.41 31.56
#5 CL-8-Std 71.55 58.72 54.57 65.30 46.96 41.10 16.26 4.73 33.43
#6 CL-8-G 65.55 48.19 47.92 64.34 45.12 40.06 16.35 9.09 32.29

#7 L-64-Std 85.35 75.16 71.13 27.55 20.95 18.21 37.69 49.35 46.62
#8 L-64-G 84.93 75.02 71.59 27.21 18.99 16.62 50.12 52.63 50.21
#9 L-Var-Std 86.46 75.69 74.43 58.61 40.34 35.81 47.86 49.00 55.16
#10 L-Var-G 85.90 75.45 72.30 58.16 40.56 35.48 66.91 52.26 60.44
#11 L-8-Std 48.54 44.18 44.53 67.65 48.26 43.62 55.04 16.82 42.69
#12 L-8-G 43.85 42.18 41.95 66.32 47.18 42.83 44.43 11.58 37.69

PointPillars 89.65 87.17 84.37 46.99 32.34 27.85 29.38 30.47 45.66
PV-RCNN 90.26 88.04 87.39 40.02 28.66 26.48 32.96 39.73 48.24

The CL-experiments run at 35ms and the L-experiments run at 20ms on a computer equipped with a GPU NVidia 1080Ti and a CPU Intel Core
i7−7700K.
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Robustness to LiDAR Resolution by Standardizing the Number of Points

Tsai et al. "See Eye to Eye: A Lidar-Agnostic 3D Detection Framework for Unsupervised Multi-Target Domain Adaptation." RA-L (2022).

Densify point clouds of target domain so that they have the same number of points as source domain’s
• Isolating object points using projection of 3D points to image and instance masks (e.g., by MaskRCNN)
• Surface Completion using the resulting object points and Ball-Pivoting algorithm
• Sampling more points from the resulting surface using Poisson Disk Sampling

Lidar-based 3D objection detection using deep learning for autonomous vehicles applications, a review – Vincent Frémont36
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Conclusion and Perspectives

Methods for building representation of point clouds for 3D object detection:
• Voxel based
• Point based
• Voxel-Point based
• Perspective: Inference time vs precision

Central question of Camera-LiDAR fusion - aligning two modalities and methods to solve this
• Using 3D points from either Point Clouds or Images
• Using 3D or 2D or both proposals
• Perspective: Point cloud densification approaches. What about fusion with other modalities and multi-modal dataset?

Practicality of 3D object detection methods
• Accuracy-speed tradeoff
• Robustness to LiDARs’ resolution and domain adaptation
• Perspectives:

Efficient hardware design for 3D object detection and new evaluation metrics.
Detection with stronger interpretability.
Learning 3D detectors from the feedback of planners
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Thank you for your attention

Questions?

Acknowledgments to my PhD student Minh-Quan DAO for his contribution to this presentation
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