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Abstract— Testing autonomous driving algorithms on mobile
systems in simulation is an essential step to validate the models
and train the system for a large set of (possibly unpredictable
and critical) situations. Yet, the transfer of the model from
simulation to reality is challenging due to the reality gap
(i.e., discrepancies between reality and simulation models).
Mixed-reality environments enable testing models on real vehi-
cles without taking financial and safety risks. Additionally, it
can reduce the development costs of the system by providing
faster testing and debugging for mobile robots. This paper
proposes a preliminary work towards a mixed-reality frame-
work for autonomous navigation based on RGB-D cameras. The
aim is to represent the objects in two environments within a
single display using an augmentation strategy. We tested a first
prototype by introducing a differential robot able to navigate in
its environment, visualize augmented objects and detect them
correctly using a pre-trained model based on Faster R-CNN.

I. INTRODUCTION
Autonomous driving (AD) is expected to contribute to the

emergence of safe, cost-effective and efficient alternatives to
existing transportation systems. AD-enabled vehicles have
been used in a wide range of applications: urban driv-
ing (cars, taxis, trucks), healthcare industry (ambulances),
farming (tractors, irrigators, buggies), industries (forklifts,
car crash testing vehicles). However, deploying a fully Au-
tonomous Vehicle (AV) remains challenging as it requires
prior training in various and repeated testing conditions.
Deep learning algorithms have been used in order to adapt
to different situations (including unpredictable or risky sce-
narios). Such approaches allow to train intelligent vehicles to
autonomous navigation, obstacle avoidance, mapping, object
detection, etc. Ideally, a fully autonomous vehicle should
be able to adapt its actions continuously in response to the
changes occurring in its environment. The process of learning
and training for autonomous vehicles can be summarized in
three steps:

1) Pre-training of the learning model in simulation;
2) Implementation of the pre-trained model on real-life

robots/cars;
3) Fine-tuning of model parameters on real vehicles.

Running tests in simulation is an essential step for model
verification and validation. During this stage, the vehicle
also needs to be trained to face critical, possibly dangerous
and/or expensive situations. Even with the latest devel-
opments on simulation tools proposing high graphics and
numerous options to reproduce real-world conditions, one
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classical problem persists: the reality gap during the transfer
of models from simulation to reality. This is generally
caused by discrepancies between conditions in simulation
and reality (vehicle dynamics, sensor data, road and weather
conditions). On the other hand, experiments on real vehicles
and environments are necessary to evaluate and validate the
model and obtain realistic results. Nonetheless, real world
experiments can be very cost-consuming as they may require
expensive materials or special facilities.

A promising alternative for this problem is to combine
the advantages of simulation with real-world conditions. This
technique is referred to in literature as Mixed-Reality (MR)
testing. It was first introduced in [7], where the authors
defined the mixed-reality environment as an environment
where real world and virtual world objects belong together
to a single environment. Figure 1, known as Milgram’s Con-
tinuum, illustrates a taxonomy for the change of real/virtual
environments to yield a new world where real and virtual
elements can co-exist. MR can be defined as the space
between a purely physical world and purely virtual world.

Fig. 1: Virtuality continuum [7]

Training vehicles to autonomous navigation in a mixed-
reality environment allows to run experiments repeatedly to
train an agent to take the convenient action for a particular
situation. Moreover, it can contribute to reducing most of
the safety risks by replacing actual obstacles with virtual
ones. It also simplifies debugging by testing directly on a
real vehicle. Virtual information such as maps and sensor
data can be mixed with information collected from the
physical environment and visualized in a unique world. In
this work, we focus on vision-based autonomous systems
as they rely on the detection and recognition of complex
roadside information (traffic lights, traffic signs, etc.) and
moving users (cars, pedestrians, etc.). The idea is to enable
these systems to be trained to face risky situations in a
safer environment where virtual elements can be added
to their perception. This paper describes a research effort
towards the development of a MR framework based on
vision. We introduce a strategy to augment a vehicle agent’s
perception by adding objects modeled in a second (virtual)



environment. The potential of the proposed framework as
well as the results of the developed augmentation strategy
are demonstrated in simulation.

II. RELATED WORK

Recently, Mixed-Reality simulations have been explored to
tackle research problems in different domains. The ambition
behind this interest is to leverage existing visual and spatial
skills to expand user interaction possibilities. In one of the
first applications of MR [3], the authors proposed a MR
interface for a user-experience based on a real book. Using
an augmented-reality display, the book is augmented with
virtual elements, allowing the users to view a shared Mixed
Reality object. Later on, MR has been applied for different
purposes. Several studies review the use of MR: its appli-
cations and current challenges [12], the applications of MR
in healthcare higher education [14], and the opportunities
of using MR simulations in teaching and learning [9]. In
robotics, MR was used first to facilitate prototyping for vir-
tual humanoids amongst real obstacles [13]. MR was applied
for mobile robotics initially in Chen et al. [4]. The aim of this
research was to integrate virtual obstacles in the real world
in order to provide a safe simulation environment. Using
LiDAR, the authors mixed the data received from the virtual
and the real world. More recent works focused on introducing
dynamic obstacles for self-driving vehicles: (i) in [15], the
authors used LiDAR to detect a virtual pedestrian. The exper-
iments were performed in the real environment augmented
by virtual elements. (ii) In [8], the mobile robot is trained
in a multi-vehicle multi-lane environment. The real robot
was learning autonomous driving with 16 virtual agents
simulating a background traffic. (iii) Another application of
introducing virtual elements was presented in [2], where the
agent followed a simulated bus using ArUco markers. The
real robot performed the same actions as its virtual twin.

To the best of our knowledge, MR environments developed
and proposed for self-driving vehicles rely on augmenting
data received from LiDAR. Although LiDAR has been
considered lately as an essential part of self-driving vehicles
proving its accuracy and efficiency, it remains unable to
interpret roadway information like landmarks and drivable
paths, to face difficulties in bad weather conditions, and
has expensive initial and maintenance costs. On the other
hand, the depth cameras have gained more importance lately.
They are less expensive, and create high-definition mapping
data by identifying target object shape, appearance, and
texture. They not only capture objects but also the landmarks,
drivable paths among other data making it a reliable sensor.
Moreover, they can gain a high-resolution image of distant
objects, thus making them able to see objects that can’t
be perceived by low-resolution LiDAR. Therefore, the main
focus of this work is to develop a mixed-reality framework
based on RGB-D cameras where an agent navigates au-
tonomously in an environment and perceives objects present
in both virtual and real worlds.

III. MIXED-REALITY FRAMEWORK

This paper presents a preliminary work that aims at
demonstrating the potential of the framework. The archi-
tecture of the framework is illustrated in Figure 2. The
main idea is to control a mobile robot in environment A
(real world), and enable it to perceive the fusion of two
environments (real and virtual). In this paper, we present
the first steps of testing on simulation by having two virtual
worlds. The tests were established on simulation. To obtain
two distinct environments in ROS, we created namespace
groups to run in parallel two simulations in the environments
A and B. The robot in the environment A is controlled by
the differential driving plugin in Gazebo, and its digital
twin in the environment B reproduced the same behavior in
this environment (section III-B). The augmentation strategy
described in section III-C is executed on the images received
from camera A and camera B before applying the object
detection algorithm to the output result.

A. Simulation tools

The simulation environment used for the framework is the
Open-Source robot simulation Gazebo [5], known for its high
flexibility and its seamless integration with the middleware
ROS [10]. It also already supports a large selection of
mobile robots and manipulators, as well as their sensors and
control algorithms. Two environments were created, where
the robot and its twin can navigate. The communication
between different nodes is set up by ROS.

B. Control and digital twining

In order to control the robot, we used existing Gazebo
plugins. They give a greater functionality to the robot model
and can link to ROS messages and service calls for sensor
output and motor input. The plugin used for driving provides
a basic controller for 2-wheeled robot in Gazebo. In order
to mirror the robot’s behavior in the second environment,
we used a simplified digital twining method by sending the
linear and angular velocity of robot A to robot B.

C. Augmentation strategy

The characteristics of the depth camera are described
in URDF files (Unified Robotic Description Format) that
can be interpreted in Gazebo. The images received from
the camera were converted to OpenCv format using the
CvBridge library. To enable the robot to perceive the fusion
of two environments, it is necessary to compare the two
images, calculate the difference between them, and add this
difference to the initial image the robot will perceive. To
achieve this augmentation, we designed an algorithm that
enables us to combine the output of the camera A (the initial
image where we will add the difference IA) and the output of
the camera B (IB). union between the two images is applied
pixelwise. Since IB is the output of the camera in the virtual
world, we are only interested in the obstacles and objects, the
background is irrelevent, therefore, it’s equal 0. Ir is the result
the robot is going to perceive, as computed in Equation 1.



Fig. 2: Overview of the proposed framework enabling the physical coupling of two virtual robots and the fusion of their
perception using a vision-based strategy.

Ir = IA ∪ (IB > 0)∗ IB (1)

This strategy allows the robot to see, in the same image,
objects appearing in the two environments. The pixelar posi-
tion is assigned to the center of the objects to determine their
location in the scene. At this stage of the work, occlusions
and light conditions are still not considered.

IV. EXPERIMENTATIONS

The MR framework developed in this paper is based on
a differential wheeled robot integrating a depth camera. The
tools and elements used as well as the results of the tests are
described in this section.

A. Experimental setup

The framework presented in this paper is based on a differ-
ential wheeled robot illustrated in Figure 3. Its movement is
based on two separately driven wheels placed on either sides
of the robot. The direction can be controlled by varying the
rate of rotation of the wheels. The kinematic model for the
robot can be expressed in Equation 2.

Fig. 3: Kinematic model of a differential drive mobile robot

P = (xr,yr,θr) is the pose of the robot, vr is the linear veloc-
ity and ωr is the angular velocity of the robot. As mentioned
in section II, this work is mainly based on depth cameras,
enabling the agent to get an additional understanding of
a scene that doesn’t require a human intervention. This is
especially important for tasks like autonomous navigation

and obstacle avoidance. The camera used during this work is
the Intel Realsense D435. It’s an active stereo depth camera
that can get up to 848x480 at up to 90 FPS [1]. It provides
distance measurement along with RGB data. This sensor has
beneficial characteristics in terms of resolution, frames per
second, form factor, weight and price range.

In order to verify and complete the framework, we decided
to test object detection algorithms on the results of the fusion.
The algorithm used for this task is the FASTER R-CNN [11].
This network is an extension of FAST R-CNN, and as its
name suggests, it is faster due to the region proposal network
(RPN). The architecture of this network is a combination of
two modules: RPN is in charge of generating region propos-
als and FAST R-CNN ensures the multiple object detection in
the proposed regions. Since the goal of this implementation
was to test the augmentation strategy proposed, we used
the pre-trained network on MS-COCO 2017 [6], a large-
scale object detection, segmentation, and captioning dataset.
It contains 328.000 images of everyday objects and humans.

B. Tests of the augmentation strategy

In order to verify the augmentation strategy presented in
section III-C, we carried out a first test in an offline setup
(i.e., using various pre-recorded images). Figure 4 presents
the fusion of two images acquired from simulation (image 1 –
left, and image 2 – center) and the result of the fusion –
right. In the initial images, we place different elements
(pedestrian, car, stop sign, etc.) in different positions (each
row in Figure 4 represents a different setup). After the
application of the algorithm, we can observe that the objects
present in the initial images (1 & 2) are placed in their exact
position within a single image (result of the fusion). Since
these images have the same background, and are both virtual,
we decided to go a step further, and test the fusion of one
real image and one virtual image. The real images represent
a traffic road. Results of this second test are presented in
Figure 5. The most-right images (resulting from the fusion)
seem to accurately combine the original images (1 & 2). The
virtual elements were added in the real images in the same

shape, size and position. The results of the offline testing



Fig. 4: Results of the fusion of Image 1 (virtual) and Image 2 (virtual)

Fig. 5: Results of the fusion of Image 1 (real) and Image 2 (virtual)



Fig. 6: Overview of the simulation in the RM framework (a) robot’s environment (b) robot’s perception (c) output of the
fusion (d) object detection applied after the fusion.

confirmed that our augmentation strategy works when objects
are located at the same position (and possibly overlapping).
However, this version of the fusion algorithm does not cast
shadows from objects present in one environment to close
objects located in the second one, but it does keep the
shadows casted by all objects on the ground. The results
of the offline tests were encouraging to start online testing.

C. Application of the detection algorithm

Once the environment was set-up and coupled to our RGB-
D augmentation strategy, the next step was to complete the
framework by implementing an object detection algorithm
and run additional on-line tests to check the validity of the
fusion. The robot will navigate in the environment A, per-
ceive the fusion of the two environments and start detecting
the objects surrounding it (e.g., stop sign, buses, stop light,
etc.).

We started testing the algorithm online using Gazebo
and ROS. We created a ROS node that subscribes to the
data received from camera A and camera B, applies the
fusion strategy, and sends the output to the robot. The
object detection algorithm was tested on the resulting images
after the fusion. The robot navigates in the environment A,
perceives the fusion of the two environments (A and B), and
detects the objects in this image as shown in the figure 6
where it recognizes the bus and the stop sign. To test the
robustness of the fusion and the detection algorithm, we
decided to overlap two elements. The results are represented
in figure 7. Image (a) and image (b) are the initial images.
Image (c) is the result of the fusion of the images. The
pedestrian and the truck are overlapped. The image (d) is the
result of the object detection algorithm applied. It detected
the pedestrian and the truck.

Fig. 7: Results of the fusion and object detection algorithm

V. CONCLUSION

In this paper, we proposed a preliminary work towards a
MR framework for autonomous navigation based on RGB-
D cameras. The main motivation behind this research is to
fill the gap between tests in simulation and real-world, to
limit safety risks and to be able to run an experiment several
times in order for the agent to learn and train on a given
task. A fusion algorithm has been proposed to mix two
virtual environments so that the robot can perceive one single
environment with different obstacles. After numerous tests
in offline and online settings, an object detection model has
been introduced to complete the framework. The particularity
of this framework is that it relies on depth-cameras, enabling
the robot to detect objects, but also landmarks and drivable
paths. We aim in the future to introduce a real robot able to
navigate in a real world and interact with physical and virtual
obstacles. Additional improvements will be considered for
future work: the improvement of digital twining by sending
velocity and position to avoid drifts, the introduction of



dynamic obstacles in the virtual environment could help to
evaluate the agent’s behavior and train it to avoid critical
situations like unexpected pedestrian crossing or accidents.
Learning-based approaches require a substantial amount of
data for learning and training the agent to autonomous
navigation and obstacle avoidance, the training of these
models in the MR framework will lead to a faster learning by
generating a diverse amount of data. Finally, the introduction
of a virtual learning agent would enable us to investigate the
communication between the agents and the interaction in a
multi-agent MR environment.
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