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Abstract— Localization methods for mobile robots have been
proven to work successfully in a wide variety of situations.
However, there still exist certain conditions that may lead these
methods to fail when deployed in real-world contexts. One of
the most common issues is the scarcity of geometric features in
the environment, especially for those methods relying on laser-
based sensory information. In this paper, we present a map that
aims to spatially capture the risk of getting localization errors.
We base our proposal on a so-called alignability metric, which
represents the capacity of a given range scan to be aligned with
subsequent ones. In our tests, we demonstrate that the proposed
alignability map serves to predict the quality of localization
throughout a warehouse environment including long aisles and
that the amount of visible features from a given position has a
decisive impact on localization error.

I. INTRODUCTION

Ensuring precise mobile robot localization is essential to
many real-world applications, including a variety of differ-
ent tasks related to industrial, domestic, medical and even
search and rescue scopes. Despite the demonstrated success,
even state-of-the-art localization methods may fail or work
poorly in certain situations for different reasons, e.g., due to
inadequate or insufficient visible landmarks [1]. Localization
methods such as variants of Monte Carlo localization (MCL)
rely on alignment of the current range scan to a map; but to
ensure high precision, the scan data needs to be constrained
enough, which essentially depends on the amount of visible
geometric features. In addition, the capacity of alignment
between subsequent scans is usually considered to be related
to the risk of localization failure, i.e., to the risk of getting
localization errors [2, 3].

Our aim in this work is to spatially represent such local-
ization risk, particularly for laser-based localization methods
that rely on existing maps. For that, we have employed a
metric related to scan alignment presented by Nobili et al.
[2], that can be obtained without tedious training and/or
parameter tuning processes. This metric is aimed at capturing
the variety of normal directions of the surfaces present in a
given scan, on a zero-to-one scale. Intuitively, the greater
this value is, the more constrained the alignment between
different scans will be, and therefore, the lower the risk of
localization failure.

In order to enable spatial prediction of localization errors
in a given environment, we introduce in this paper a so-
called alignability map, based on the alignability metric by
Nobili et al. [2]. Our proposal consists in a grid map in which
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each cell represents the expected alignability that can be
obtained from different scans at that point. Our experiments
show that alignability can be employed as an indicator of the
expected magnitude of localization error, and demonstrate
that our approach serves to adequately anticipate such errors.
A use case for the alignability maps could be, for instance,
to include them as cost maps for a motion planner, which
could then take localization risk into account when planning
paths through feature-sparse environments.

In summary, the overall contributions of the paper are:
(1) an algorithm for building alignability maps and (2), a
validation of their application to the prediction of localization
errors.

II. RELATED WORK

Assessing the quality of localization is a topic of high
relevance in robotics research, as the accuracy of state-of-
the-art localization methods inevitably depends on several
external factors, including the shape of the environment [4].
There exist several works in the literature that focus on
defining and evaluating different indicators related to the
quality of localization, which we discuss in this section.

In the scope of localization with range sensors, for in-
stance, some works are aimed at the assessment of alignment
quality between consecutive scans, which is usually ad-
dressed by developing methods for the detection of alignment
errors, identified in these works as a symptom of localization
failure. A typical solution consists in using the cost function
of some scan registration method along with the setting of
an appropriate threshold to estimate alignment quality [5, 6].
However, it is not generally possible to set a single threshold
that can be applied in different environments [7]. There also
exist other works that are aimed at a more elaborated fault
detection of scan alignment. Bogoslavskyi and Stachniss [8],
for instance, propose a quality metric based on free-space
information for assessing scan matching quality, although
they restrict to objects segmented in a scene. From a more
generic perspective, Yin et al. [9] introduces a method based
on logistic regression and metrics related to point cloud over-
lap and similarity for the classification of alignment errors.
Almqvist et al. [7] study a number of “weak” alignment
classifiers and combine them with AdaBoost. Akai et al.
[10] propose a probabilistic model of scan misalignment
based on Markov Random Fields (MRFs) that achieves good
classification accuracy. Adolfsson et al. [11] propose to use
the differential entropy in the point clouds obtained from
scans for measuring alignment quality, also achieving high
classification accuracy and a high degree of generalization.



The contributions mentioned so far address the alignment
quality of scans “after the fact,” that is, as a way to assess
how well-aligned two scans actually are. In contrast, what
is needed to produce a map that can predict localization
error is rather a method capable of predicting the degree
of alignability of scans instead, which is considered closely
related to localization failure. Nubert et al. [12] propose a
neural network-based method for detecting poor alignability
of input point clouds during robot operation. Although effec-
tive, this approach requires environment-specific threshold
tuning and the prediction provided is binary, meaning that
different levels of localization risk would not be available,
which we need in this work. An alternative solution to this
approach is the one by Nobili et al. [2], which introduces
a method that serves to predict alignability based on an
analysis of the geometry of point clouds. Risk is defined
in this case to quantify the degree to which alignment is
constrained, and it is provided on a zero-to-one scale. Both
of these methods aim to predict the risk of localization,
by relying on different metrics. However, none of these
formulations are based on a spatial representation that allows
for the construction of a map encoding such risk in different
parts of a given environment, which is the focus of this work.

III. ALIGNABILITY MAP

In this section, we provide a brief description of the
process that we follow to compute alignability for a given
scan, which differs in some aspects from the one in Nobili
et al. [2], as explained later on. Then, we show how to use
this result to build a complete alignability map. In the scope
of this work, each scan obtained from a laser-based sensor
will always be a 360-degree three-dimensional point cloud P ,
although the method would be easy to extend to 2D sensors
as well.

The first step of the process consists in the segmentation
of the input point cloud into a set of n planar surfaces
P = {P1, P2, ..., Pn}, each one being a subset of points of
P . For that, we apply the region growing algorithm described
by Rabbani et al. [13], implemented in the PCL library
[14]. Each segmented surface will be considered for the
process only if its planarity and size are adequate, which
we determine by using appropriate thresholds pth and sth,
respectively, obtained after different trials. For each Pi ∈ P,
we compute a normalized covariance matrix Σ. Then, we
calculate planarity as p = λs/λl, where λs and λl are the
smallest and largest eigenvalues of Σ, respectively. In the
case that p < pth, we consider Pi as a planar surface and
then compute an oriented bounding box for it, from which
we also calculate the area s. Finally, the segmented plane
will be accepted if s > sth. The values employed for the
thresholds are of 0.05 for pth and of 0.01m2 for sth.

From this process, we get a subset of selected planes Ps ⊆
P that will be considered to compute alignability, which is
done as follows. First, a normal direction nj = (xj , yj , zj)
is obtained for each point j of all the planes in Ps, with N
the total number of such points. Then, an N×3 matrix M in
which each row represents a normal nj is defined. After that,

a principal component analysis (PCA) is performed on matrix
M, from which we get three eigenvalues, λa ≥ λb ≥ λc ≥ 0.
Finally, alignability α can be defined as

α =
λc

λa
, (1)

where α ∈ [0, 1] ⊂ R. In contrast to Nobili et al. [2], we do
not consider the overlap between two different point clouds
to compute alignability. We can assume that overlap will be
high enough as long as a map of the scene is available for
localization, which is our use case. Thus, we only compute
alignability for a single point cloud instead of doing it for
two of them.

With all the above, we can now formally introduce our
alignability map, which is based on the metric defined
in equation (1). Like in the case of an occupancy grid
map, our proposal also relies on a discrete, two-dimensional
representation of space. Each cell represents the expected
degree of alignability within that region of the map. Thus,
an alignability map A is a matrix-based representation of the
space in which each cell:

A(i, j) = median(a), (2)

where a = (α1, α2, ..., αn) is a vector of n samples of
alignability values αi obtained from point clouds produced
by a laser-based sensor placed within the region of the
scene corresponding to the considered cell (i, j). To prevent
biasing of the alignability score by asymmetric empirical
distributions containing outliers, we use robust statistics, i.e.,
median. Also, for the sake of simplicity, we assume that the
sensor has a 360o field of view, thus, each cell only denotes
position. For the case of 3D sensors with a more restricted
field of view, the alignability map would have to be defined
on different layers, each one representing a different orienta-
tion. Furthermore, in the case of 2D sensors, line orientations
would be considered instead of plane orientations.

Our alignability map is also tied to the corresponding
occupancy grid map of the environment as follows. Let ral
and roc be the resolutions of the alignability and occupancy
maps, respectively. Since the value of alignability usually
changes only gradually, we allow ral ≤ roc, with typical
numbers being ral = 1 cell/m and roc = 10 cells/m. Also, the
computation in equation (2) is carried out only if occupancy
in the corresponding area is low enough. To determine that,
we define a maximum level of occupancy omax beyond which
alignability should not be obtained. In the case that ral < roc,
we calculate the ratio of cells corresponding to the same area
in our alignability map that has an occupancy level below
omax. This ratio should then not be higher than a certain,
appropriate threshold.

IV. VALIDATION

In this section, we demonstrate the utility of our proposal
through different experiments. All the tests we describe here
have been actually carried out in a virtual environment based
on Gazebo and ROS [15], which incorporates a 3D mesh
representation of a real environment, a food warehouse in
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Fig. 1. Pictures of the real setup used for the experiments. (a) View of the
central aisles of the warehouse. (b) View of the robot.

Fig. 2. Three-dimensional view of the virtual environment in Gazebo with
the simulated truck robot, pointing towards one of the aisles in figure 1(a),
and its 3D lidar sensor.

Sweden (see figure 1(a)). The necessary data for building this
mesh has been obtained on-site by using a mobile robot, a
Toyota BT SAE200 stacker truck (see figure 1(b)). The truck
is endowed with a sensor stack comprising two 2D lidars,
one 3D lidar, two RGBD cameras, and an emitrace safety
camera1. However, only the 3D lidar, a Velodyne HDL-32E
has been used in this case. We have also completed our
virtual environment with a simulated version of the robot
and the 3D lidar sensor (see figure 2).

1https://www.retenua.com/en/products/emitrace

In the next subsections, we illustrate the process of creat-
ing an alignability map, and we show how alignability can
be used as a prediction of the localization error.

A. Building of an alignability map

We have produced an alignability map of the warehouse
environment by generating 3D laser scans from several
points in the Gazebo model (figure 2), computing their
alignability and storing the result in a grid map, following
the procedure described in section III. In this case, we aim to
illustrate how alignability would be in case of limited sensory
capabilities. For that, we have cropped the maximum range
of the simulated lidar to only 6.5 meters, which is a much
shorter distance than the average length of the aisles in the
warehouse (approximately 30 meters). We have used such
a limited range to provoke relatively high and noticeable
localization errors in some parts of the environment, as we
explain in the experiment of section IV-B. The resulting
alignability map, with a resolution of 1 meter per cell, is
shown in figure 3(a). We have represented alignability values
using colors; the redder the lower, and the more blue, the
higher (see legend in the figure). It can be noticed from this
map that regions with low alignability usually correspond to
feature-sparse parts of the scene, like the long corridor B–C,
for instance. On the other hand, regions in which there is a
higher amount of features (e.g., corners) tend to also have
higher alignability, as in the case of corridors A–D or C–D.
Thus, we can affirm that the proposed map correctly captures
the variety of features in the environment, as expected.
However, it can also be observed from figure 3(a) that the
highest alignability values in this scene are usually around
0.5. This can be considered good enough to ensure low
localization errors, as we show later on. Values close to
1 represent an extreme situation in which a really high
amount of different normal directions is observed, which is
not necessary for a precise localization, as explained.

B. Alignability as a predictor of localization errors

We have also carried out an experiment in which we aim to
analyze the relationship between alignability and localization
error. In this experiment, we drive the simulated truck so that
it follows a rectangular trajectory, described by waypoints
A to D (see figure 3), that is repeated three times. Again,
the range of the simulated sensor is limited to 6.5 meters so
that the highest localization errors obtained can be noticeable
enough, as we show later on. We have estimated the robot
position pest along that path by using NDT-MCL localization
[16] and have calculated the error e with respect to the
ground-truth position pgt, provided by Gazebo. We have
done this for those cells of the alignability map containing
the trajectory followed by the robot. The error for a particular
cell (i, j) is calculated as follows:

e(i, j) =
1

Ns

Ns∑
k=1

∥pest(k)− pgt(k)∥, (3)

where k denotes a sample of the estimated and ground-truth
positions, obtained at the same time, out of a total number
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Fig. 3. (a) Alignability map obtained for the whole food warehouse, with
waypoints. Here, colors indicate values of alignability, according to the
legend provided (bottom left). (b) Error map obtained during the driving
experiment described in the text, with the same waypoints. In this case,
colors indicate the ratio of error obtained w.r.t. the maximum one (0.73
meters) on a zero-to-one scale, according to the legend (top left).

of Ns samples in the considered cell. The result is a map
of localization errors, which is depicted in figure 3(b). We
can observe that the highest errors, around 0.7 meters, are
obtained towards the end of corridor B–C, where alignability
is also low (see figure 3(a)). As expected, localization error
is not very high along the remaining parts of the trajectory
(mostly below 0.1 meters) since alignability is good enough.
Notice, however, that the error does not immediately increase
when entering the low-alignability region of corridor B–C,
which is due to the robustness of MCL over time.

The intuition about the influence of alignability on local-
ization error can now be further demonstrated by comparing
the predictions from the alignability map (figure 3(a)) to the
results shown in the error map (figure 3(b)). For that, we
have represented the alignability corresponding to one cell as
a function of the error obtained for that cell, which is shown
in the scatter plot of figure 4. These results demonstrate
that alignability is useful as a predictor of the risk of
getting localization errors, as expected. In particular, it can be
noticed that alignability is always below 0.1 when the error
is high, i.e., when it is greater than 0.3 meters. Also, when
alignability is greater than 0.4, localization error is never too
high, since it is always less than 0.1 meters.

From the results depicted in figure 4, however, we can
further observe that alignability can be low even if errors
are also low. The reason behind this is that localization does
not immediately deteriorate when suddenly entering a low
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Fig. 4. Scatter plot representing the relationship between alignability and
localization error for the driving experiment described in the text. Most of
the larger errors are obtained when alignability is below 0.1. In contrast,
when it is greater than 0.4, localization errors are always low.

alignability area (e.g., corridor B–C) as explained before.
Thus, when alignability is high enough, we can affirm that
the risk of localization error is low, and vice versa.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced a grid map that serves to
represent the risk of localization error by taking the geometry
of the environment into account. The utility of this approach
has also been validated across different experiments. We
have demonstrated that the proposed map, based on the
alignability metric by Nobili et al. [2], correctly captures the
amount and variety of features present in the environment, as
observed by the robot. Also, we have shown that alignability
has a clear influence on localization error and that our map
can be used to predict it.

There are also several tasks that we plan to address in
future work. One of them is the integration of our alignability
map for motion planning, which could serve to generate
safe trajectories that minimize the risk of localization error.
Also, we plan to extend our approach so that it includes
different sources of information for estimating such risk (e.g.,
information about the dynamics of obstacles in a particular
scenario). Finally, we plan to validate our approach for a
wider variety of settings, e.g., for outdoor and unstructured
environments.
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