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Abstract— This paper addresses the problem of small object
change detection for small obstacle avoidance in everyday robot
navigation. Despite recent research progress in the field of
object detection and change detection, the problem of detecting
semantically non-distinctive and visually small objects is still a
challenging problem. We developed a practical image processing
pipeline by combining state-of-the-art techniques from image
retrieval, image registration, and image change detection. We
then integrated the image processing pipeline into a traditional
plan-sense-act cycle to realize a reactive collision avoidance
system. Experiments using a real mobile robot verified the
effectiveness of the proposed approach.

I. INTRODUCTION

This paper considers the problem of small object change
detection during everyday robot navigation and its ap-
plication to small obstacle avoidance. Avoiding collisions
with small objects (e.g., nails, cables, smartphones, glasses,
handkerchiefs) is undoubtedly an important capability for
an indoor mobile robot to avoid damaging itself and its
surroundings. In this study, we consider everyday navigation
scenarios, in which the robot may encounter unseen small
objects in a familiar environment such as “convenience
store,” “flooring,” and “office room”.

The problem of image change detection becomes chal-
lenging when changes are semantically non-distinctive and
visually small. In these cases, an image change detection
model (e.g., semantic segmentation [1], object detection [2],
anomaly detection [3], and differencing [4]), which is trained
in a past domain to discriminate between the foreground and
the background, may fail to classify an unseen object into the
correct foreground or background class. Typical alternative
solutions, such as visual object detection [5], assume pre-
trained object categories and are not valid for unknown
objects.

We address the above issue by introducing a plan-sense-
act (PSA) pipeline, as shown in Fig. 1. Specifically, the
motion planning is formulated as a batch process and the
system operates on a relatively long-term planning horizon.
We developed a practical image processing pipeline by
combining state-of-the-art techniques from image retrieval,
image registration, and image change detection. We then
integrated the image processing pipeline into a traditional
plan-sense-act cycle for a reactive collision avoidance sys-
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Fig. 1. Floor object avoidance application using change detection

tem. Experiments using a real mobile robot verified the
effectiveness of the proposed approach.

II. RELATED WORK

Image change detection is a long standing issue of com-
puter vision and it has various applications such as satellite
image [6], [7], and autonomous driving [4], [8]. Existing
studies are divided into 2D or 3D, according to the sensor
modality, and we focus on image change detection in 2D
perspective views from an on-board front-facing camera in
this study. Since the camera is a simple and inexpensive sen-
sor, our 2D approach can be expected to have an extremely
wide range of applications.

Pixel-wise differencing techniques for image change de-
tection rely on the assumption of precise image registration
between live and reference images [9]. This method is effec-
tive for classical applications such as satellite imagery [9],
in which precise registration is available in the form of 2D
rotation-translation. However, this is not the case for our per-
spective view applications [10], in which precise pixel-wise
registration itself is a challenging ill-posed problem. This
problem may be alleviated to some extent by introducing an
image warping technique, as we will discuss in Section III-
B. However, such pixel warping is far from perfect, and may
yield false alarms in image change detection.

Novelty detection is a major alternative approach to image
change detection [11]. In that, novelties are detected as
deviations from a nominal image model that is pre-trained
from unlabeled images in a past training domain. Unlike
pixel-wise differencing, this technique can naturally capture
the contextual information of the entire image to determine
whether there are any changes in the image. However, on
the downside, the change regions cannot be localized within
the image even if the existence of the change is correctly
predicted. Therefore, existing researches of novelty detection
in the literature have focused on applications such as intruder
detection [12], in which the presence or absence of change,
not the position of the changing object, is the most important
outcome information.



Fig. 2. Small object detection pipeline using change detection

Fig. 3. Robot used in the experiment

Several new architectures targeting small object change
detection have recently been presented. For example, Klomp
et al. proposed to use Siamese CNN to detect markers for
improvised explosive devices (IEDs) [13], where they tackled
the resolution problem by removing the output-side layer
of ResNet-18 [14] to improve the detection performance
of small objects. Our approach differs from these existing
approaches in that (1) it extends the plan-sense-action cycle
to realize a reactive collision avoidance system, and (2) it is
able to incorporate the background model.

III. SMALL OBJECT DETECTION FRAMEWORK

Figure 2 shows the proposed pipeline of small object
change detection. First, we perform a preprocessing to com-
pensate for the viewpoint error and the resulting uncertainty
in non-linear mapping from the 3D real environment to a
2D image plane of the on-board camera. This preprocessing
consists of LRF-SLAM based viewpoint estimation (Sec-
tion III-A) followed by pixel-wise warping (Section III-B).
However, even with such a preprocessing, the images are
often affected by unpredictable nonlinear mapping errors. To
address this, we introduce a plan-sense-act cycle for stable
collision avoidance. That is, the robot operates on a relatively
long-term planning horizon, in which muliti-view knowledge
integration is performed to keep a 2D obstacle map up to
data, and replanning is performed to avoid obstacles safely
and efficiently. Each of the above modules/subsystems will
be described in detail in Subsections III-A, III-B, and III-C.

Figure 3 shows the experimental robot platform. The
robot is equipped with a highly-accurate positioning system
based on a two-dimensional laser range finder (2D LRF).
Without losing generality, a highly accurate two-dimensional
environment map is assumed to be constructed in advance
using the LRF-based SLAM algorithm. In online, the robot
estimates the robot’s viewpoint by building a local map
in a similar way and map-matching the local map with
the environment map. It was found that this LRF-based
map matching is sufficiently robust against dynamic changes
caused by dynamic obstacles and pedestrians, and it provides
state and accurate function of self-localization. It is also
assumed that the front-facing monocular camera is the only
sensor that can be used for change detection. That is, our
target small objects are too small and cannot be detected by
the LRF system mentioned above.

A. Image Retrieval

A change detection algorithm requires a pairing of live and
reference images as input. We developed an image retrieval
system for aligning live images with the reference images.
An input live image is paired with a reference image if its
angle deviation from the live image is less than the threshold
of 3.6 degree. If no such reference image exists, it is paired
with the nearest neighbor viewpoint to the live image’s
viewpoint, without considering the angle information.

B. Image Registration

We further compensate for the viewpoint misalignment in
LRF-SLAM by introducing an image warping technique. A
warp is a 2D function, u(x, y), which maps a position (x, y)
in the reference image to a position u = (x′, y′) in the
live image. A method for dense image alignment, PDC-Net,
which is recently proposed in [15], is employed to find an
appropriate warp, by minimizing an energy function in the
form:

− log p(Y |Φ(X; θ)) =
∑
ij

log p(yij |φij(X; θ)) (1)

where X is input image pair X = (Iq, Ir), Y is ground-
truth flow, Φ and φ are predicted parameters. PDC-Net is
a neural network that takes two images as input and finds
the correspondence between the pixels of the two images.
Compared with the conventional methods, the uncertainty
of the prediction of the correspondence between pixels can



reference image warped image live image

Fig. 4. An example of pixel warping.

Fig. 5. Image used for training CSCD Net. From the left, reference image,
live image, teacher image.

be obtained at the same time, so that the prediction of
pixels with high uncertainty can be unreliable. Uncertainty
is expressed as a real number from 0 to 1, and this time
image alignment was performed using only pixels with an
uncertainty of less than 0.5. PDC-Net used a network trained
in the MegaDepth dataset [16]. An example of pixel warping
is shown in Fig. 4.

C. Image Change Detection

The state-of-the-art Siamese model for image change
detection, CSCDNet [1], is used as our base architecture.
The network is initialized with the weight pre-trained on
ImageNet [17]. The pixel-wise binary cross-entropy loss is
used as loss function as in the original work of CSCDNet
[1]. PDCNet [15] is used to align reference images. Adam
optimizer [18] is used for the network training. Learning rate
is 0.0001. The number of iterations is 20,000. The batch size
is 32.

D. Plan-Sense-Act Cycle

The proposed image processing pipeline was implemented
on a collision avoidance system for an indoor mobile robot.
The collision avoidance system uses the traditional plan-
sense-act cycle. In the planning phase, a static map of
obstacles is used to find an collision-free route to the goal.
The plan is updated in real time by feeding back the results
of sense and action during navigation. Specifically, the map
is updated by incorporating the information of new changing
objects provided by the image processing pipeline into the
obstacle map, assuming that the pose relationship between
the floor surface and the camera coordinate system is a-priori
known. The next best action is then generated via a shortest
path algorithm on the updated map.

TABLE I
EXPERIMENTAL RESULTS

Scene ID Depth Camera Change Detection
1 × (smartphone) ✓
2 ✓ ✓
3 × (pliers, bolts) × (bolts)
4 ✓ ✓
5 × (S-shaped hook) ✓

IV. EXPERIMENTAL RESULTS

The proposed method was implemented on a real indoor
mobile robot and verified experimentally.

A. Settings

The number of training images for the CSCD-Net (Section
III-C) was 20,000, and the learning rate was 0.0001. The
number of iterations was 20,000, The training process took
about 20 hours using the NVIDIA GeForce RTX 3090.

A trained CSCD-Net outputs for each pixel, the probability
of the pixel belonging to change regions as a real value
between 0 to 1. We binarize the probability into 0 or 1 using
a preset threshold of 0.5.

The number of training and test images were 184 and 52.
For the small change objects, two types of wallets and

three types of handkerchiefs, were placed at random loca-
tions on the floor.

The experimental platform is shown in Fig. 3. The size
of the robot is width 0.345 [m] × depth 0.335 [m] ×
height 0.450 [m]. It is equipped with a 2D Lidar sensor
RPLIDAR A2 M8 and an RGB-D camera RealSense D435i.
The resolution of the camera was 424 × 240.

The camera was mounted on the robot at yaw angle -
8.6 [deg] and height 0.245 [m]. An alternative possible
solution would be to mount the camera horizontally (i.e.,
yaw angle 0 [deg]). However, it would have large occluded
regions, and fail to detect nearby small obstacles. On the
contrary, mounting the camera vertically (i.e., yaw angle -
90 [deg]) would have narrow field of views, and would not
be effective for detecting distant obstacles. As an another
drawback, images taken by such a downward-looking camera
often fail to capture features of background objects, yielding
poor performance in image change detection.

The training set was annotated in a semi-supervised way.
The annotation process consists of two steps. First, Pad-
dleSeg [19], [20], a highly-efficient automatic segmentation
model was applied to a training image. Next, each of the
segmented regions was manually labeled as either change or
no-change. An example of training image and its annotated
regions is shown in the Fig. 5.

The planning module for the collision avoidance system
was based on the autonomous traveling package of ROS [21].
Specifically, teb local planner and global planner [22] were
employed as the local and global planners.

An additional depth image information from the on-board
RGB-D camera was used for precisely measuring the small
change objects detected with respect to the obstacle map.



Fig. 6. test environment

Fig. 7. 2D map created in the test environment

Fig. 8. Small object dropped on the floor this time

This choice allows us to eliminate the influence of depth
noises in obstacle avoidance. However, we believe that recent
3D depth prediction models would provide sufficiently noise-
robust depth information without relying on such an addi-
tional depth sensor, which is a future direction of research.

An alternative depth-based change detection system was
developed and used as a baseline method for change detec-
tion. Specifically, depth image was reused for this purpose.
This is an application that estimates the relative 3D position
of a small object on the floor from the depth image of the
RGB-D camera and adjusts it so that an object with a height
of about 10 [mm] or more from the bottom of the robot is
detected as an obstacle.

The environment is a flooring space with an area of 10m
× 16m. Figs. 6 and 7 show the test environment and map
created in the test environment. The test environment was
different from the training environment only in the robot’s
trajectories and the appearance of small change objects.

Figure 8 shows small objects were used in the experiments.
For scene #1, glasses, cable, notepad, smartphone, and bag
were used as the small objects. For scene #2, cable, notepad,

Fig. 9. Change detection result. From the left, reference image, live image,
change detection result.

glasses, and smartphone were used. For scene #3, pliers,
bolts, and Phillips screwdriver were used. For scenes #4 and
#5, a character hook, pliers, bolts, and a screwdriver were
used. For all scenes, the robot moves from left to right in the
Fig. 7. For fair comparison, the start position, goal position,
and object placement of the robot were set the same between
the proposed and baseline methods.

B. Results

Table I lists all the small objects the method failed to
avoid collision with during the five sessions of navigation
tasks. The proposed method was successful for most small
objets the robot encountered in the five different scenes. As
can be seen, the proposed method outperforms the baseline
method for most scenes and small objects considered here.
Bolt was the only object that the proposed framework failed
to avoid a collision.

Figure 9 shows results of change detection.
It should be noted that the depth-based method (i.e., base-

line method) has a narrow effective distance range in which
changes can be stably detected. In contrast, the proposed
method was able to detect visually small objects at distance
more stably.

The processing cycle of the proposed pipeline was about
12 Hz. Accelerating the real-time processing towards high-



speed mobile robot applications is an important direction of
future research. We also plan to collect large datasets and
conduct large-scale experiments.

V. CONCLUSION

Despite recent research progress in the field of object
detection and change detection, the problem of detecting
semantically non-distinctive and visually small objects is
still a challenging problem. We developed a practical image
processing pipeline by combining state-of-the-art techniques
from image retrieval, image registration, and image change
detection. We then integrated the image processing pipeline
into a traditional plan-sense-act cycle to realize a reactive
collision avoidance system. Experiments using a real mobile
robot verified the effectiveness of the proposed approach.
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