

Electrolux KOLLMORGEN

Alignability maps for ensuring high-precision localization

Authors: Manuel Castellano Quero*, Tomasz Piotr Kucner** and Martin Magnusson*

*Örebro University (Sweden), **Aalto University (Finland),

**Finnish Center for Artificial Intelligence (Finland)

13th Workshop on Planning, Perception and Navigation for Intelligent Vehicles

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022)

Research question: how can we quantify the <u>risk</u> of localization failure?

Research question: how can we quantify the <u>risk</u> of localization failure?

• Localization can still fail in real-world environments

Research question: how can we quantify the <u>risk</u> of localization failure?

Localization can still fail in real-world environments **____** range-based sensors

Research question: how can we quantify the <u>risk</u> of localization failure?

• Proposal: compute and represent the level of risk spatially

Environment

Research question: how can we quantify the <u>risk</u> of localization failure?

• Proposal: compute and represent the level of risk spatially

Environment

Occupancy map

Research question: how can we quantify the <u>risk</u> of localization failure?

• Proposal: compute and represent the level of risk spatially

Environment

Research question: how can we quantify the <u>risk</u> of localization failure?

• Proposal: compute and represent the level of risk spatially

Environment

Alignability map

Alignability metric (Nobili et al., 2018)

• Simona Nobili, Georgi Tinchev and Maurice Fallon. *Predicting Alignment Risk to Prevent Localization Failure*. 2018 IEEE International Conference on Robotics and Automation (ICRA).

• Capacity of a given range scan to be aligned (zero-to-one scale)

• The higher the value, the lower the risk of localization error

Alignability metric (Nobili et al., 2018)

- Capacity of a given range scan to be aligned (zero-to-one scale)
- Computation:

- Capacity of a given range scan to be aligned (zero-to-one scale)
- Computation:
 - Segment into planar surfaces

- Capacity of a given range scan to be aligned (zero-to-one scale)
- Computation:
 - Compute per-point normals

- Capacity of a given range scan to be aligned (zero-to-one scale)
- Computation:
 - Perform PCA analysis on the normals

- Capacity of a given range scan to be aligned (zero-to-one scale)
- Computation:
 - Perform PCA analysis on the normals $\implies \lambda_a \ge \lambda_b \ge \lambda_c \ge 0$

Alignability metric (Nobili et al., 2018)

- Capacity of a given range scan to be aligned (zero-to-one scale)
- Computation:
 - Perform PCA analysis on the normals $\longrightarrow \lambda_a \ge \lambda_b \ge \lambda_c \ge 0 \implies \alpha = \frac{\lambda_c}{\lambda_c}$ where $\alpha \in [0,1] \subset \mathbb{R}$

- Capacity of a given range scan to be aligned (zero-to-one scale)
- Computation:
 - Perform PCA analysis on the normals $\longrightarrow \lambda_a \ge \lambda_b \ge \lambda_c \ge 0 \implies \alpha = \frac{\lambda_c}{\lambda_c}$ where $\alpha \in [0,1] \subset \mathbb{R}$

Alignability metric (Nobili et al., 2018)

- Capacity of a given range scan to be aligned (zero-to-one scale)
- Computation:
 - Perform PCA analysis on the normals $\longrightarrow \lambda_a \ge \lambda_b \ge \lambda_c \ge 0 \implies \alpha = \frac{\lambda_c}{\lambda_c}$ where $\alpha \in [0,1] \subset \mathbb{R}$

Implementation

• A 2D grid map that captures alignability in an environment

- A 2D grid map that captures alignability in an environment
- For each cell (i,j):

- A 2D grid map that captures alignability in an environment
- For each cell (i,j):
 - Place sensor in the corresponding region

- A 2D grid map that captures alignability in an environment
- For each cell (i,j):
 - Get alignability samples from scans in that region $\mathbf{a} = (lpha_1, lpha_2, ..., lpha_n)$

Implementation

- A 2D grid map that captures alignability in an environment
- For each cell (i,j):
 - \circ Annotate the cell with the median alignability value, i.e., $\mathcal{A}(i,j) = \mathrm{median}(\mathbf{a})$

- A 2D grid map that captures alignability in an environment
- For each cell (i,j):
 - For simplicity, we assume 360° field of view

Building of an alignability map

• Validation in both virtual and real environments

Building of an alignability map

- Validation in virtual environment (built upon real data)
 - Toyota BT SAE200 stacker truck (with 3D Velodyne HDL-32E lidar)

Warehouse environment

Forklift robot

Building of an alignability map

• Validation in virtual environment (built upon real data)

Warehouse environment in Gazebo

Simulated forklift robot

Building of an alignability map

- Validation in virtual environment (results)
 - Occupancy map

Building of an alignability map

- Validation in virtual environment (results)
 - Alignability map

Building of an alignability map

- Validation in virtual environment (results)
 - Alignability map

Building of an alignability map

- Validation in virtual environment (results)
 - Alignability map

Building of an alignability map

- Validation in virtual environment (results)
 - Alignability map

Alignability as a predictor of localization errors

- Validation in virtual environment (results)
 - Driving experiment

Alignability as a predictor of localization errors

- Validation in virtual environment (results)
 - We measured localization errors (NDT-MCL method w.r.t Gazebo's ground truth)

Alignability as a predictor of localization errors

- Validation in virtual environment (results)
 - We measured localization errors (NDT-MCL method w.r.t Gazebo's ground truth)

Error map

Alignability as a predictor of localization errors

- Validation in virtual environment (results)
 - We measured localization errors (NDT-MCL method w.r.t Gazebo's ground truth)

Error map

Alignability as a predictor of localization errors

- Validation in virtual environment (results)
 - We measured localization errors (NDT-MCL method w.r.t Gazebo's ground truth)

Error map
Alignability as a predictor of localization errors

- Validation in virtual environment (results)
 - We studied the correlation between alignability and localization error

Alignability as a predictor of localization errors

- Validation in virtual environment (results)
 - We studied the correlation between alignability and localization error

Alignability as a predictor of localization errors

- Validation in virtual environment (results)
 - We studied the correlation between alignability and localization error

Correlation plot

Alignability as a predictor of localization errors

- Validation in virtual environment (results)
 - We studied the correlation between alignability and localization error

Building of an alignability map

• Validation in real environment

- Experiment setup
 - Robotnik Kairos+ platform

Manipulation platform in a transport corridor system

Building of an alignability map

• Validation in real environment

- Experiment setup
 - Robotnik Kairos+ platform
 - Ouster OS0-128 lidar
 - 360° horizontal fov
 - 90° vertical fov

Manipulation platform in a transport corridor system

Building of an alignability map

• Validation in real environment

- Experiment setup
 - Robotnik Kairos+ platform
 - Ouster OS0-128 lidar
 - 360° horizontal fov
 - 90° vertical fov
 - Driving around underground transport corridors (very long)

Manipulation platform in a transport corridor system

Building of an alignability map

- Experimental setup
 - Alignability map used as a costmap for a motion planner (ROS move_base)

- Experimental setup
 - Alignability map used as a costmap for a motion planner (ROS move_base)
 - Simulated experiments in our virtual environment

- Experimental setup
 - Alignability map used as a costmap for a motion planner (ROS move_base)
 - Simulated experiments in our virtual environment
 - Two waypoints

- Experimental setup
 - Alignability map used as a costmap for a motion planner (ROS move_base)
 - Simulated experiments in our virtual environment
 - Two waypoints

- Experimental setup
 - Alignability map used as a costmap for a motion planner (ROS move_base)
 - Simulated experiments in our virtual environment
 - Two waypoints

- Experimental setup
 - Alignability map used as a costmap for a motion planner (ROS move_base)
 - Simulated experiments in our virtual environment
 - Two waypoints
 - Red paths do not consider alignability (shortest)

- Experimental setup
 - Alignability map used as a costmap for a motion planner (ROS move_base)
 - Simulated experiments in our virtual environment
 - Two waypoints
 - Red paths do not consider alignability (shortest)
 - Blue paths do (safest)

Alignability in motion planning

Experiment C-D (no alignability)

Alignability in motion planning

Experiment C-D (alignability)

Alignability in motion planning

Experiment G-H (no alignability)

Alignability in motion planning

Experiment G-H (alignability)

• Alignability maps serve to capture the risk of localization error spatially

• Alignability maps serve to capture the risk of localization error spatially

• We have demonstrated their utility in different environments

• Alignability maps serve to capture the risk of localization error spatially

• We have demonstrated their utility in different environments

• They can be used to generate safer trajectories in motion planning

Electrolux KOLLMORGEN

Alignability maps for ensuring high-precision localization

Authors: Manuel Castellano Quero*, Tomasz Piotr Kucner** and Martin Magnusson*

*Örebro University (Sweden), **Aalto University (Finland),

**Finnish Center for Artificial Intelligence (Finland)

13th Workshop on Planning, Perception and Navigation for Intelligent Vehicles

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022)

Alignability map

Alignability metric (Nobili et al., 2018)

- Informal definition
 - Variety of surfaces directions in a given scan, on a zero-to-one scale
 - The higher the value, the lower the risk of localization failure
- Computation
 - Segment point cloud into a set of planes
 - Compute all the normal directions in those planes (per-point)
 - Perform PCA analysis on those normals
 - Eigenvalues: $\lambda_a \ge \lambda_b \ge \lambda_c \ge 0$
 - Alignability:

$$\alpha = \frac{\lambda_c}{\lambda_a} \quad \text{ where } \alpha \in [0,1] \subset \mathbb{R}$$

Alignability maps for ensuring high-precision localization Speaker: Manuel Castellano Quero, Örebro University (Sweden)

Introduction

Problems addressed and contributions

- Localization methods may still fail in real-world contexts
 - **Common issue**: scarcity of geometric features
 - Methods relying on **range-based** sensory information
 - How to quantify the **risk** of localization **failure**
- Proposed solutions
 - Spatial representation of risk based on *alignability*
 - Building **alignability maps**
 - Validation for the prediction of localization errors
 - Application for motion planning

Alignability map

Implementation

- A 2D grid map that represents the expected alignability within a region of space
 - Each cell (i,j) is the **median** alignability of a set of *n* point clouds gathered in the region:

 $\mathcal{A}(i,j) = \mathrm{median}(\mathbf{a})$

where
$$\mathbf{a} = (\alpha_1, \alpha_2, ..., \alpha_n)$$

• Alignability is only computed when the level of occupancy is lower than 50%

- We assume sensors with **360° field of view**
 - For more limited fov, we propose to define the map in different layers (future work)

Building of an alignability map

• Validation in virtual environment (built upon real data)

Warehouse environment

Virtual environment in Gazebo

Application

Alignability in motion planning

- Experimental setup
 - Our alignability map is used as a costmap for a motion planner (ROS **move_base**)
 - Alignability threshold of 0.02
 - Use of the maximum and minimum possible costs in the planner
 - Simulated experiments in the previous virtual environment
 - Complete a trajectory between two waypoints (considering and ignoring alignability costs for planning)

Validation

Alignability in motion planning

Speaker: Manuel Castellano Quero, Örebro University (Sweden)