Toward socially aware navigation :
from pedestrian’s behavior
modeling to proactive navigation




Global objective

Autonomous vehicles integrated in spaces shared with
pedestrians, bicycles, other vehicles

Develop a navigation system suitable for shared spaces
with vulnerable road users




Main challenges

Increase vehicle and pedestrian safety in congested
environments

Make autonomous vehicles friendly and actors in
the global movement

Understand and use social and urban rules for
autonomous vehicles

Produce accepted behaviors for passengers and
pedestrians



Many scientific problems to solve




Focus on 3 problems




Crowd simulation around AV
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Pedestrian in open environments

PEDESTRIANS HAVE

A limited perception

A limited attention

A personal space whose
shape depends on the
situation

A behavior (in terms of
trajectories) that depends
on the crowd’s density
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Motivation to simulate crowds

Model realistic behaviors of pedestrians
Validate these behaviors with real data
Predict pedestrian’s trajectories around AV
Taking into account : limited perception and
attention, personal space, density, groups...
Using social force models
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Pedestrian/pedestrian Interaction

model

Perception and attention model
(. Adaptive personal space

Groups modeling
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Pedestrian / AV Interaction model
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Pedestrian behaviors

In the proposed model, the
members of the same group:

- stay together

- do not collide with the
autonomous vehicle

Real data taken from : Yang D., Li L., Redmill K., OzgUner U. Top-view Trajectories: A Pedestrian Dataset of
Vehicle-Crowd Interaction from Controlled Experiments and Crowded Campus. In: 30th IEEE Intelligent Vehicles
Symposium. Paris, France, 2019.




SPACISS - Simulations

SPACISS ROS tools & A ¥
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SPACISS - Simulator for Pedestrians and an Autonomous Car in Shared Spaces
https://github.com/maprdhm/Spaciss
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Focus on 3 problems




Proactive, cooperative and
social navigation framework




Framework

Pedestrian-Vehicle
Interaction
Scenario

=

Behavioral Modeling

Cooperative Behavior Estimation ]

[ Cooperation-Based Trajectory Prediction ]

Vehicle Control 'l'

| Decision Making ]

Reactive Navigation Proactive Navigation

Uncooperative agent: ‘-

Cooperative agent:
Influence agent’s trajectory
proactively.

React and wait for the
agent to pass.
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Proactive navigation

=
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Control (Local path
- modification)

Pedestrian Behaviour and
Trajectory Prediction

L Environment J
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Proposed Pedestrian Model
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Proposed Pedestrian Model
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Pedestrian model parameters

estimation

Using 2 pedestrian-vehicle interaction datasets
Manual annotation for the agent’s cooperation
Cooperation model found while

Minimizing the error in the mean values of CF

Maximizing the cross-correlation between similarly annotated agents
in one simulation
Trajectory Model obtained using the pedestrian trajectories

as the ground-truth
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Cooperation model : results




Proactive navigation

’ Lateral Control
—P‘ (Local path
modification)

Longitudinal
Control

Pedestrian Behaviour and
Trajectory Prediction

Y

Environment J
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The Proactive Navigation Policy

Find the longitudinal control that

maximizes the pedestrians cooperation
while ensuring the safety constraints
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Proactive vs Reactive

66 pedestrians with various CF
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Quantitative results

100 proactive tests, 100 reactive tests simulating a mixed crowd.
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Benefits of the proactivity

Results showed that even this one-degree of
oroactive control improves the navigation
nerformance significantly.

The main advantages of the method include:

avoiding the freezing robot problem in dense
scenarios,

major efficiency gains in terms of the travel time,
navigating socially by incorporating the
pedestrian cooperation behavioral model and
maintaining pedestrian safety.




Lateral control

Find the lateral control that minimizes the deviation from the global
path, while maintaining pedestrian comfort.

Dividing the space into channels

Computing the cost of each channel *Z, x4
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Combining crowds simulation and

pedsim_simulatorg—>»C___]

proactive navigation

SPACISS ROS tools
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Simulation results

Simulation Results On
PedSim Under ROS

Proactive And Human-Like Maneuvering
M. Kabtoul, A. Spalanzani & P. Martinet




Focus on 3 problems




Validation using virtual

pedestrians




Motivation :Validate complexAl-

based automotive software

Simulation based testing : flexible, fast,
cheap, safe BUT not entirely realistic

Real world testing : realistic BUT complex,
time consuming, costly and dangerous

Augmented reality to replace sensor outputs
and test seamlessly all software from
perception to control
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Fusing simulated data with real

data

Simulation Real sensors
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virtual data introduced in the augmented
reality is similar to real data.

The software under test will behave similarly
in real, virtual or hybrid scenes.
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Qualitative results

Sensor point cloud

Cimitila

Simulated point cloud Visualization

Fused point cloud

We introduce Augmented Reality in automotive experiments.




Navigating crowds

Sensor point cloud
Simulated point cloud

Fused point cloud
Visualization




Interested in a PhD, Postdoc or engineer
position ?

anne.spalanzani@inria.fr
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