

Trajectory Monitoring For A Drone Using Interval Analysis

Sylvain Largent and Julien Alexandre dit Sandretto

Department U2IS ENSTA Paris PPNIV'22

Context

Properties on dynamical systems (mainly in robotics):

Verification

Formal proof of safety

Viability

Synthesis

- Parameter identification
- Control

Dynamical systems

- Dynamics \Rightarrow Differential equations (ODEs or DAEs)
- Properties \Rightarrow Constraints

Optimization

Reachability

Limit cycle

Motion Planning

How to guarantee safety for a UAV ?

Mainly three techniques to avoid static obstacles

- control architecture (detection of obstacles and reactive control)
- safe by construction motion planner
- control synthesis (eg. vector field)

But...

Dynamic obstacles, uncertainties, etc.

Anticipative based techniques

Anticipative based techniques

A realistic model can be simulated to estimate the future and detect collision (and optimize): Model predictive control for example

Monitoring

We propose a monitor that check the safety on a sliding horizon.

Realistic model ?

Very hard to obtain, in particular for a drone...

Interval analysis can help

Parameters and uncertainties (such as model discrepancies) in intervals: $\rho \in [\rho]$ Not a trajectory but a (continuous) set of trajectories

Realistic model ?

Very hard to obtain, in particular for a drone...

Interval analysis can help

Parameters and uncertainties (such as model discrepancies) in intervals: $\rho \in [\rho]$ Not a trajectory but a (continuous) set of trajectories

Realistic model ?

Very hard to obtain, in particular for a drone...

Interval analysis can help

Parameters and uncertainties (such as model discrepancies) in intervals: $\rho \in [\rho]$ Not a trajectory but a (continuous) set of trajectories

Set-based model

Compromise is needed between safety and precision: "large" model is safe but useless, "thin" model is maybe too optimistic.

 \Rightarrow Need an identification step.

Validated simulation

Simulation of ordinary differential equations with sets, provides a tube (a list of boxes) by the help of Taylor series or Runge-Kutta (several tools: VNode, CAPD, JuliaReach, DynIbex, etc).

Parameter identification

First, choose the level of complexity for the model.

Our model

Drone is controlled by velocity: an ordinary differential equation, strongly simplified to compute quickly and monitoring online.

$$\begin{cases} \dot{x} = [\alpha_x] * u_x + [\beta_x] \\ \dot{y} = [\alpha_y] * u_y + [\beta_y] \text{ or } \dot{\mathbf{w}} = [\alpha] * \mathbf{u} + [\beta] \\ \dot{z} = [\alpha_z] * u_z + [\beta_z] \end{cases}$$
(1)

with $u_{.}$ defined by a proportional controller (trajectory tracking), α and β intervals taking into account uncertainties and simplifications.

Parameter identification

Accuracy of model depends on horizon

We want actual states included in computed tube, and tube as thin as possible.

Few flights and tests to obtain values for α and β (for 1s horizon):

$$\begin{cases} [\alpha] * \mathbf{u} + [\beta] = \begin{pmatrix} [0,1] \\ [-0.4,0.4] \\ [-0.4,0.4] \end{pmatrix} * \mathbf{u} + \begin{pmatrix} [-0.1,0.1] \\ [-0.1,0.1] \\ [-0.1,0.1] \end{pmatrix}$$
(2)

(More details in the paper...)

Experimentation setup

The environment

Some buildings, take-off and landing areas and a virtual door.

Largent and Alexandre dit Sandretto - Trajectory monitoring

The environment

Some buildings, take-off and landing areas and a virtual door.

Largent and Alexandre dit Sandretto - Trajectory monitoring

Algorithm

- 1. Plan a trajectory avoiding obstacles (enclosed in boxes) from current position to goal (with RRT*);
- Check on a short horizon if there is a collision (with interval based monitor);
- If no collision, let the UAV continues its trajectory; Otherwise, add or inflate previous detected obstacles to take into account uncertainties and GOTO 1;
- 4. At the end of the horizon, measure current position and GOTO 2.

Now: 2 and 3 are offline and simulated. Coming soon.

Algorithm

Rapidly-exploring Random Trees RRT and its upgraded version RRT^{\ast}

Results on two scenarios

First scenario: open door

Results on two scenarios

Second scenario: closed door

Conclusion

- Interval based model of a drone, verified by experiment
- Monitoring for safety (over sliding horizon)
- ► The drone flies !

Future

Add the replan part in the global architecture, the detection of dynamical obstacles, etc.

Experimentation of monitoring

Questions ?

Largent and Alexandre dit Sandretto - Trajectory monitoring

October 20, 2022- 16