

Modeling and Using the Context of Navigation: Towards Context-Aware Navigation of Autonomous Vehicles

Sélim Chefchaouni Moussaoui, Alessandro Corrêa Victorino and Marie-Hélène Abel Heudiasyc Laboratory, UMR CNRS 7253 Université de Technologie de Compiègne (UTC)

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022) 13th Workshop on Planning, Perception, Navigation for Intelligent Vehicle (PPNIV 2022)

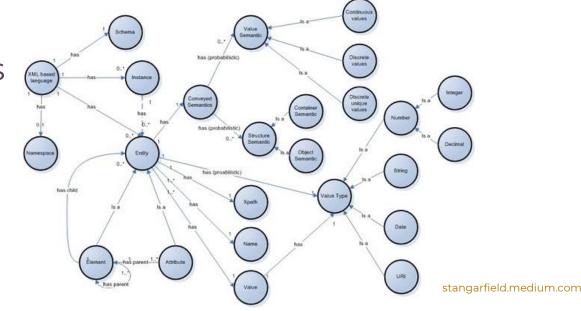
Contents

- 1. Introduction
- 2. Context Modeling with Ontologies
- 3. Using the Context
- 4. Tests and Results
- 5. Conclusion

Introduction

• Typical autonomous vehicle system:

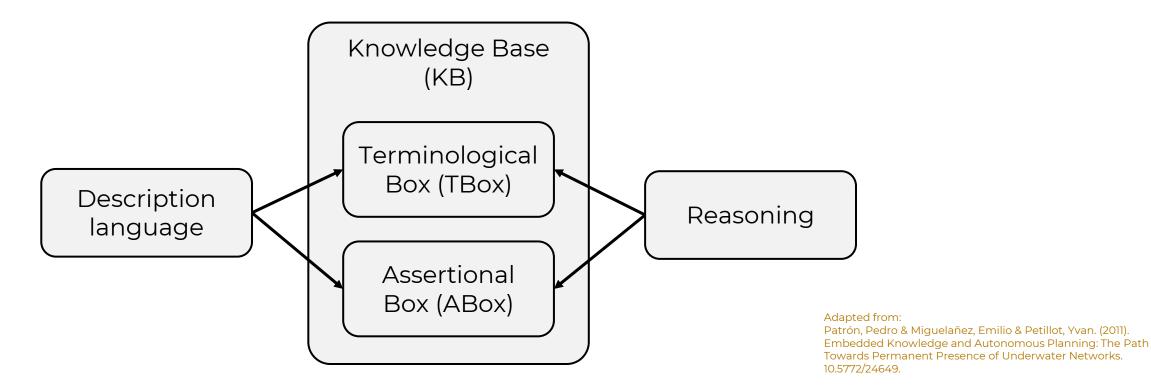
Rosique, F.; Navarro, P.J.; Fernández, C.; Padilla, A. A Systematic Review of Perception System and Simulators for Autonomous Vehicles Research. *Sensors* 2019, *1*9, 648. https://doi.org/10.3390/s19030648


Introduction

- Typical autonomous vehicle system:
 - Perception
 - Planning
 - Control
- But lack of context awareness:
 - Example: the vehicle has a fragile passenger or load
 - The vehicle speed needs to be adapted
 - Two problems:
 - How to model this information?
 - How to consider it in?

Introduction

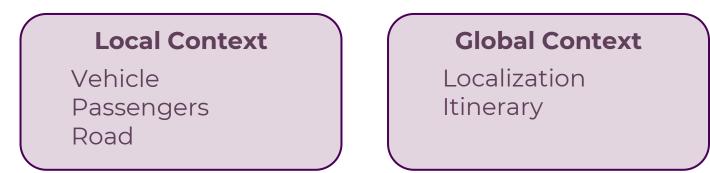
- Our idea:
 - Using ontologies


- Method:
 - Modeling the context with ontologies
 - Considering the context model in the navigation modules

Context Modeling with Ontologies

• Ontology:

• semantic data model of concepts and relations between them



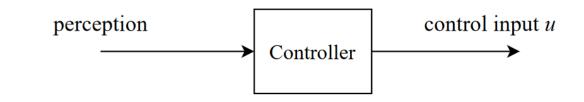
Context Modeling with Ontologies

• Our model

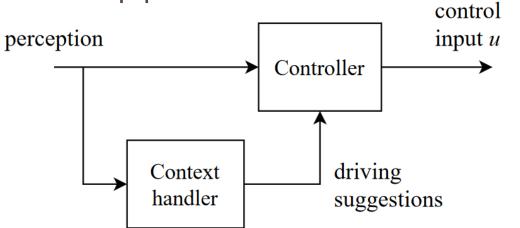
- Models the context of navigation
- Extension of the previous model from *F. Farrufini et al*¹:
 - More contextual elements
 - Models Local and Global context

control mission planning

1. F. Faruffini, H. Pousseur, A. Corrêa Victorino, and M.-H. Abel, "Context Modelling applied to the Intelligent Vehicle Navigation," in 47th Annual Conference of the IEEE Industrial Electronics Society (IECON 2021). Toronto, Canada: IEEE, Oct. 2021, pp. 1–6


Context Modeling with Ontologies

• Our context of navigation:


Classes	 www.topDataProperty hasAge hasBatteryLevel hasCityRoad SpeedPreference hasCurrentTime hasD hasEstimatedArrivalTime hasEsuclidianDistance hasHeight hasHighway SpeedPreference hasHumidityLevel hasLat hasLat hasNodelD hasRealDistance hasRaalDistance hasRaalDistance hasAurious hasLondWeight hasLod hasRodED hasRaalDistance hasRaalDistance hasSobstacle SpeedPreference hasRa hasRoadType hasSpeed hasSpeed hasSpeed hasRoadType hasSuggestedJerk hasSuggestedSpeed hasSuggestedSpeed hasSuggestedSpeed hasSuggestedSpeed hasSuggestedSpeed hasSuggestedJerk hasSuggestedSpeed hasSuggestedSp	••••••••••••••••••••••••••••••••••••	battery driver driver driverState egoVehicle egoVehicleCoordinates egoVehicleDimensions Load1 Load2 passenger1DrivingStylePreference passenger1State passenger1State passenger2State tank tank
CIdSSES	Data properties	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

• Standard approach:

• Context-aware approach:

Methodology

- 1. Use the reasoner to provide suggestions
- 2. Use the suggestion in optimization function

- 1. Providing suggestions:
 - Reasoner (Pellet) uses SWRL rules to infer new information
 - We define rules that impacts the suggestions of control inputs:
 - speed
 - jerk
 - acceleration
 - itenerary

Example rule:

EgoVehicle(?v) \land SpeedSuggestion(?sg) \land hasPassenger(?v,?p) \land hasDrivingStylePreference(?p,?dsp) \land hasRoadType(?rp, "CityRoad") \land hasCityRoadSpeedPreference(?sp) \land isOnRoadPart(?v,?rp) \rightarrow hasSuggestedSpeed(?sg,?sp)

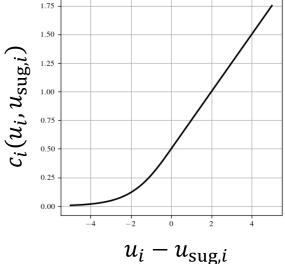
2. Considering the suggestions in the navigation task:

• Optimization problem for control or planning:

 $\mathbf{u}_{\text{opt}} = \arg \max_{\mathbf{u}} [f(\mathbf{u})]$

• Adding function to represent the *contextual suggestions*:

$$\mathbf{u}_{\text{opt}} = \arg \max_{\mathbf{u}} [\alpha \cdot f(\mathbf{u}) + (1 - \alpha) \cdot c(\mathbf{u})]$$


• Separate context functions to consider each control input:

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \qquad \mathbf{u}_{sug} = \begin{bmatrix} u_{sug,1} \\ u_{sug,2} \\ \vdots \\ u_{sug,n} \end{bmatrix}$$

$$c(\mathbf{u}) = \sum_{i=0}^{n} w_i \cdot c_i (u_i, u_{\mathrm{sug},i})$$

• Partial context functions:

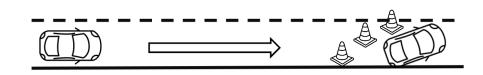
$$c_{i}(u_{i}, u_{\sup,i}) = \begin{cases} \frac{1}{1 + e^{-(u_{i} - u_{\sup,i})}} & \text{if } u_{i} \leq u_{\sup,i} & \underbrace{j_{i,0}}_{i,j} & \underbrace{j_{i,0}} & \underbrace{j_{i,0}}_{i,j} & \underbrace{j_{i,0}}_{i,j} & \underbrace{j_{i,$$

- Image and Context-based Dynamic Window Approach (ICDWA)¹:
 - visual servoing controller with context awareness
 - example of our methodology
- Front-wheel car model (Ackerman's approximation):

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \\ \dot{\theta} \\ \dot{\phi} \end{bmatrix} = \begin{bmatrix} \cos \theta \sin \phi \\ \sin \theta \cos \phi \\ (1/l) \sin \theta \\ 0 \end{bmatrix} v + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \omega$$

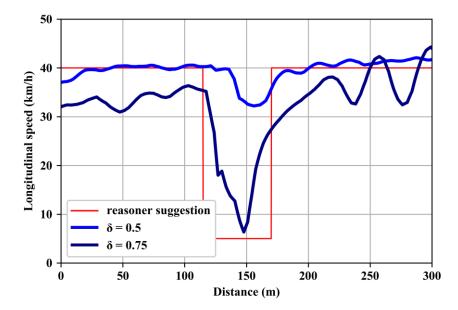
1. F. Faruffini, H. Pousseur, A. Corrêa Victorino, and M.-H. Abel, "Context Modelling applied to the Intelligent Vehicle Navigation," in 47th Annual Conference of the IEEE Industrial Electronics Society (IECON 2021). Toronto, Canada: IEEE, Oct. 2021, pp. 1–6

- Control input:
 - linear and angular velocities


$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} v \\ \omega \end{bmatrix}$$

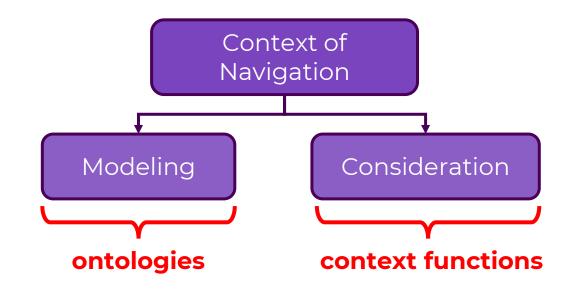
- Optimization function:
 - adapted DWA computed with image features
 - with additional function $c(\mathbf{u})$ for context awareness

 $f(\mathbf{u}) = \alpha \cdot \text{heading}(\mathbf{u}) + \beta \cdot \text{dist}(\mathbf{u}) + \gamma \cdot \text{velocity}(\mathbf{u}) + \delta \cdot c(\mathbf{u})$


- Test scenario:
 - Vehicle driving on a city with obstacle in front of it

- The passenger has the following speed preferences:
 - 110 km/h on highways
 - 70 km/h on countryside roads
 - 40 km/h on cities
 - 5 km/h when crossing an obstacle

• Results on SCANeR Studio:



• Need to tune properly coefficient $\delta = 1 - \alpha$ for appropriate context consideration

Conclusion

• Context-aware navigation:

- Further considerations:
 - reasoning and real-time
 - parameter tuning
 - other implementations (planning)

Thank you for your attention!

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022) 13th Workshop on Planning, Perception, Navigation for Intelligent Vehicle (PPNIV 2022)