Learning from Human Driver Data for Humanized Autonomous Driving at Dynamic Scenes

Huijing Zhao<zhaohj@pku.edu.cn>

POSS-Lab <<u>http://www.poss.pku.edu.cn/</u>>

School of Intelligent Science and Technology, Peking University

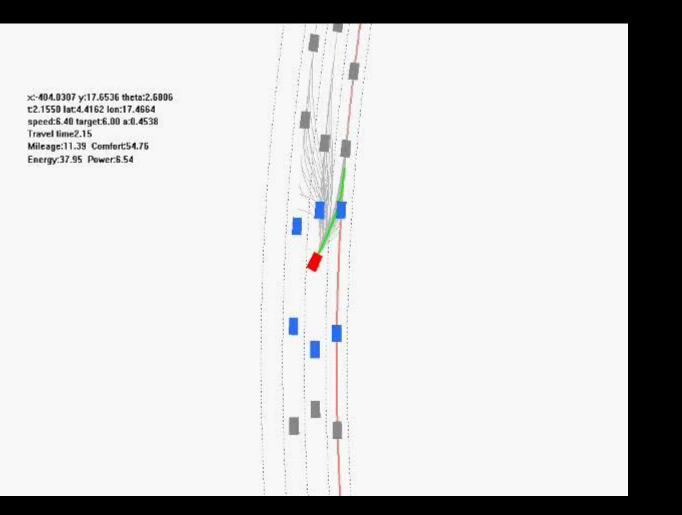
This Talk

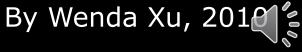
- 1. Our naturalistic driving behavior study (2011~)
- 2. Learning from naturalistic driving data for human-like autonomous highway driving
- 3. Imitation learning for humanized autonomous navigation at crowded intersections

 Wen Yao
 Donghao Xu
 Zhezhang Ding
 Zeyu Zhu
 Xu He

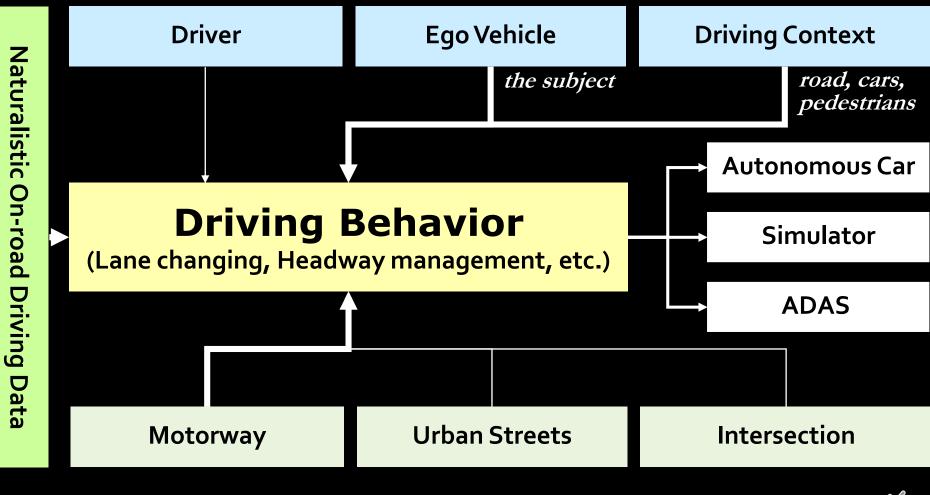
 The leading students of these works!

The reason for our naturalistic driving behavior study

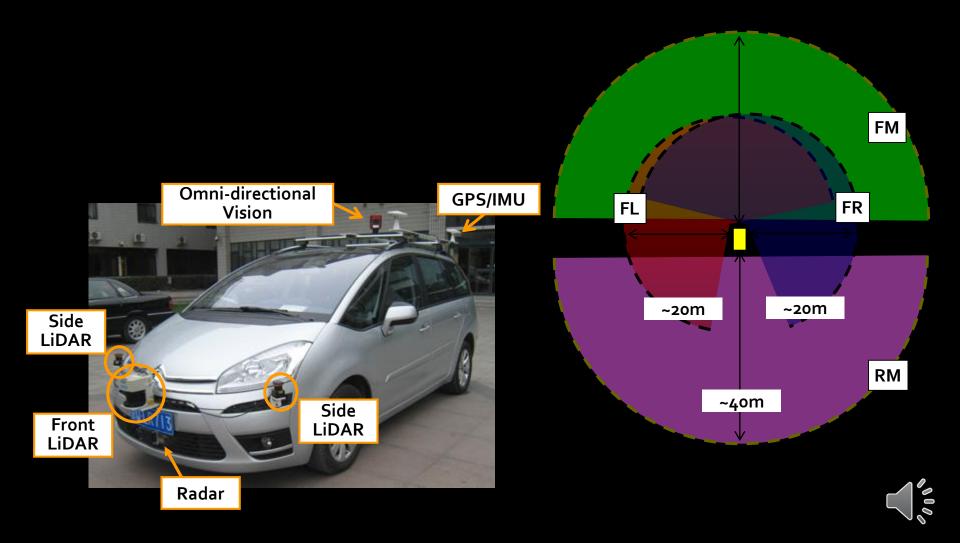


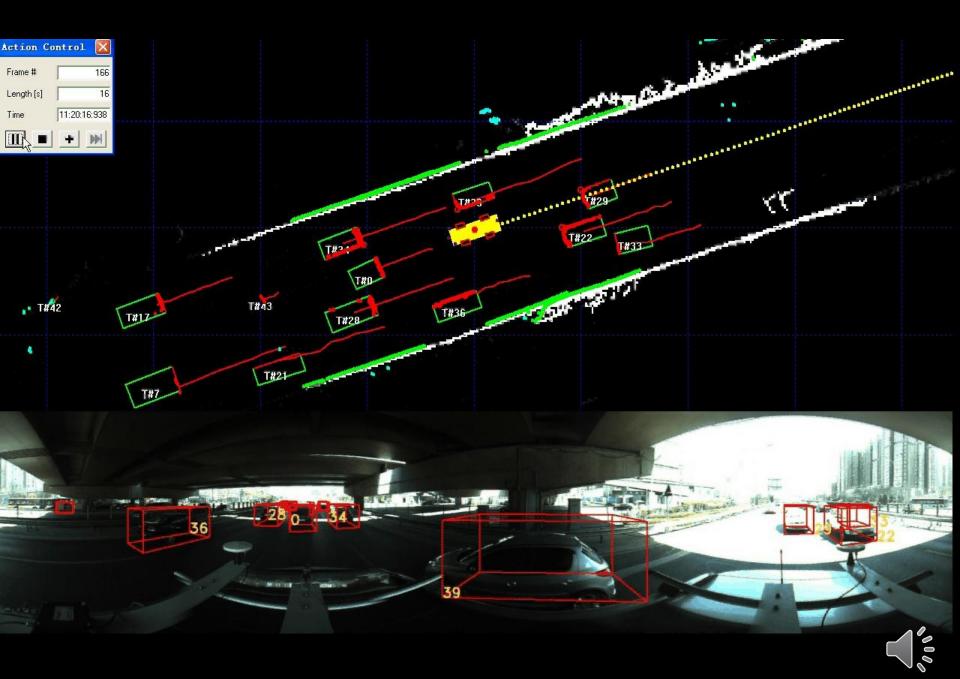


Naturalistic Driving Behavior Study

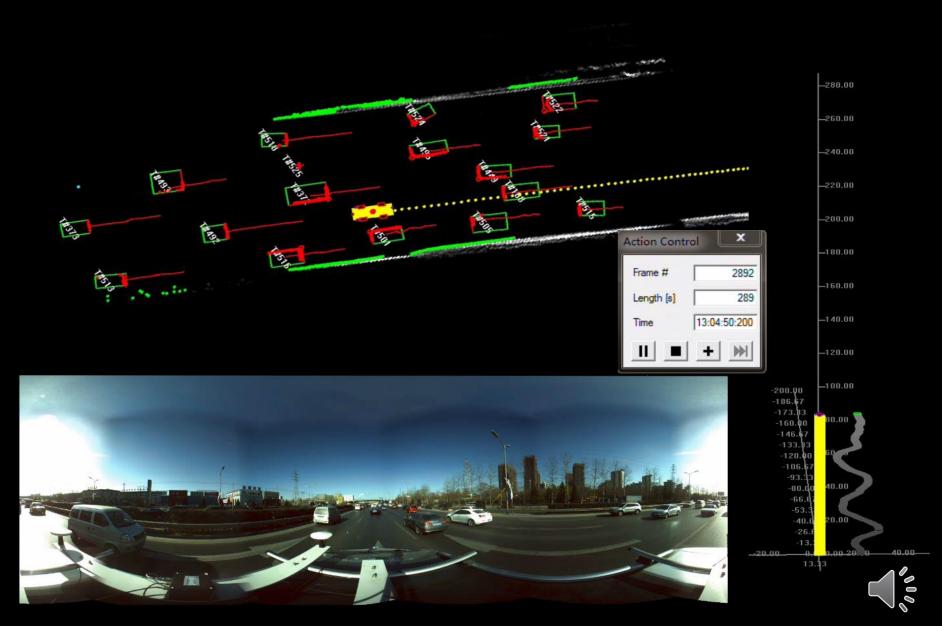


PSA-PKU OpenLab Program [2012~2019]

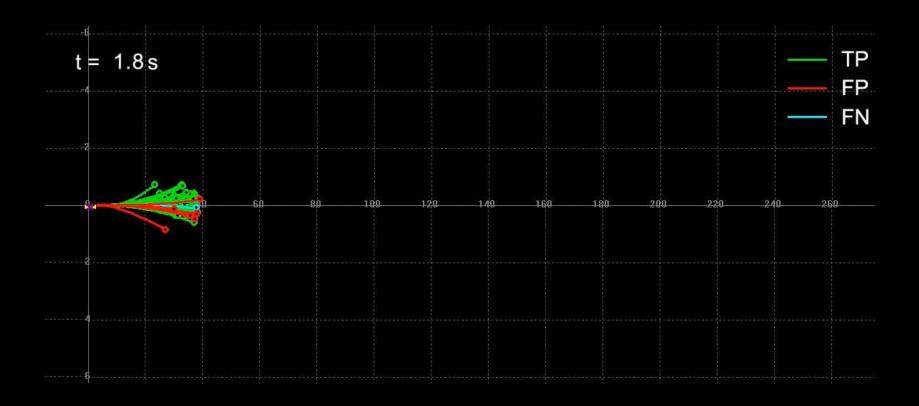




A Car following Data

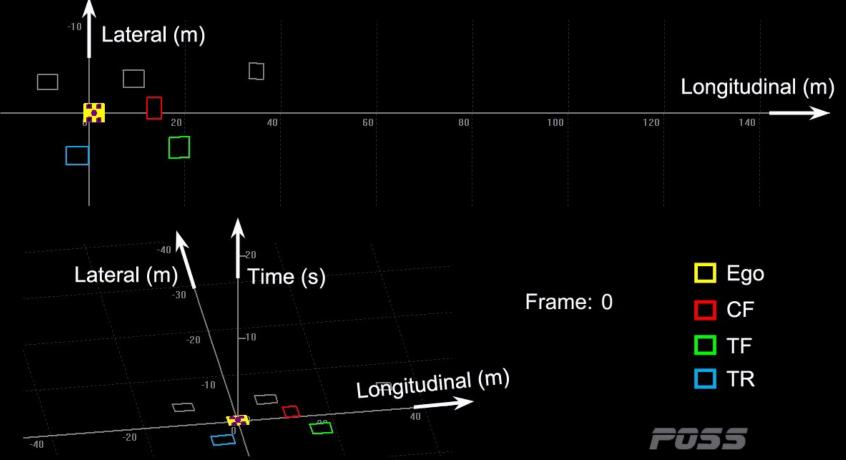


Lane Change Segment Extraction



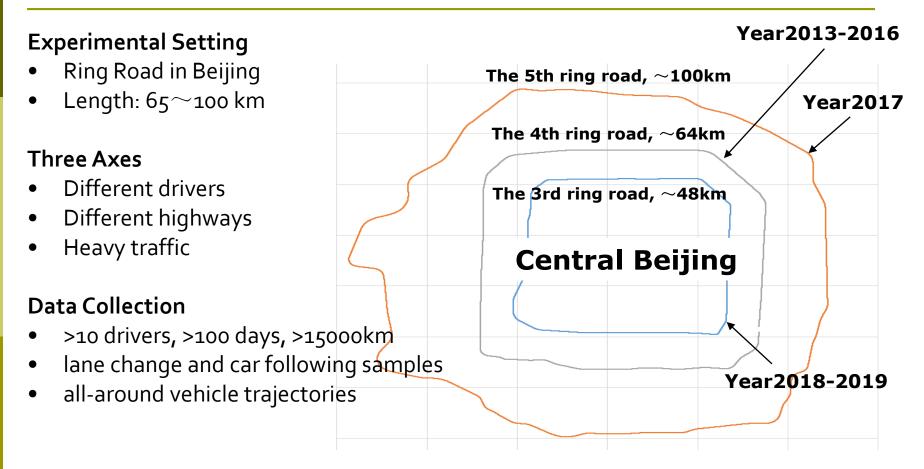
Day 1 round 1

PKU OMNI SMART SENSING



PKU OMNI SMAAT SENSING

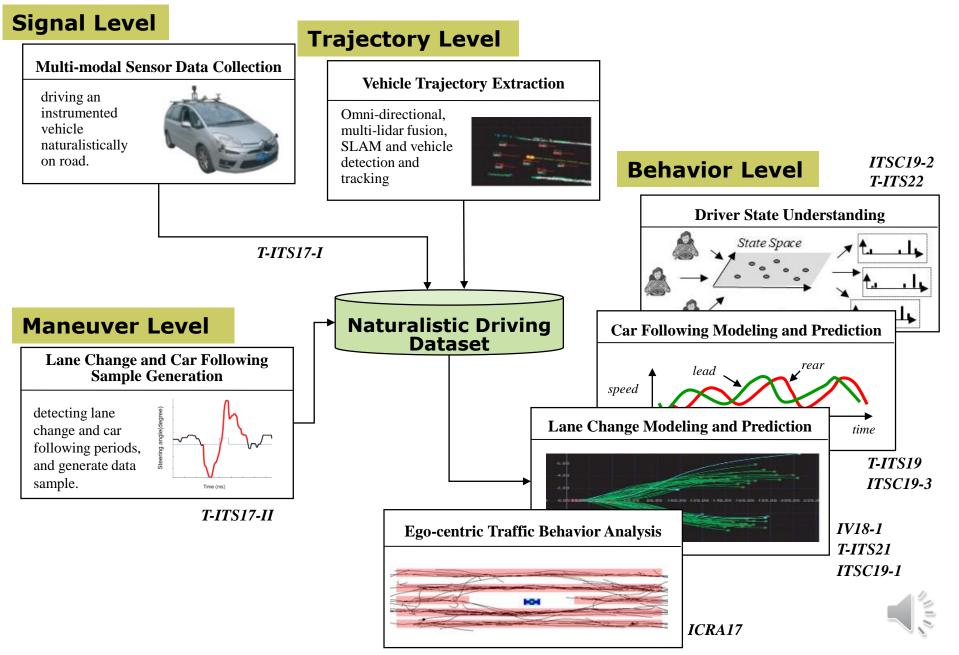
On-road Data Collection (2013-2019)



Trajectory Quality Examination

Zhao, H et al., On-road Vehicle Trajectory Collection and Scene-based Lane Change Analysis: Part I IEEE T-ITS, 18(1), 192-205, 2017.

Naturalistic Driving Behavior Study



Aware the Scene - Naturalistic Driving Behavior Study

1. Scene Aware Lane Change Analysis

- ✓ Lane Change Extraction and Interactive Behavior Modeling **[T.ITS17-II]**
- Naturalistic Lane Change Analysis for Human-Like Trajectory Generation
 [IV18-1]

2. Trajectory planning for human-like autonomous driving

- ✓ A Human-like Trajectory Planning Method by Learning from Naturalistic Driving Data [IV18-2]
- ✓ Human-like Highway Trajectory Modeling based on Inverse Reinforcement Learning [ITSC19-1]
- ✓ Learning From Naturalistic Driving Data for Human-Like Autonomous Highway Driving [T.ITS21]

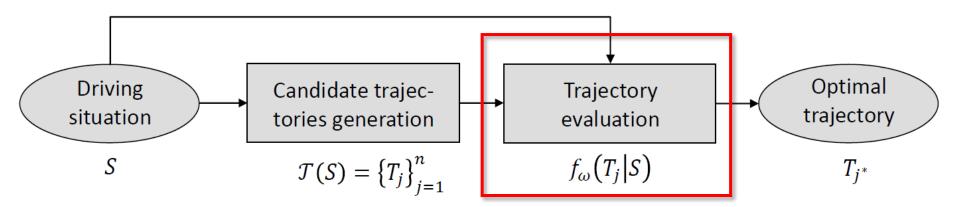
3. Multi-state car following behavior modeling and reasoning

- ✓ Aware of Scene Vehicles Probabilistic Modeling of Car-Following Behaviors in Real-World Traffic [IV17, T.ITS19]
- ✓ Driver Identification through Multi-state Car Following Modeling **[T.ITS22]**
- ✓ Backpropagation through Simulation: A Training Method for Neural Networkbased Car-following Models [ITSC19-3]

4. Ego-centric Traffic Behavior Analysis

Ego centered traffic behavior understanding through multi-level vehicle trajectory analysis **[ICRA17]**

Human-Like Trajectory Planning by Learning from Naturalistic Driving Data



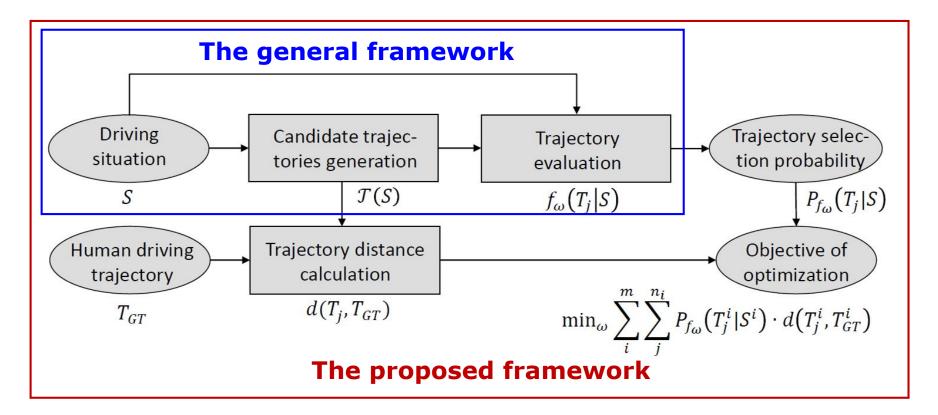
A general framework of trajectory planning

Finding a proper cost function to evaluate trajectories is non-trivial!

- Requires a significant amount of hand-engineering by experts;
- Hard to incorporate the likelihood to human driver's behavior;
- The cost function can be furthermore used for trajectory prediction.

-> Learning from Naturalistic Driving Data !

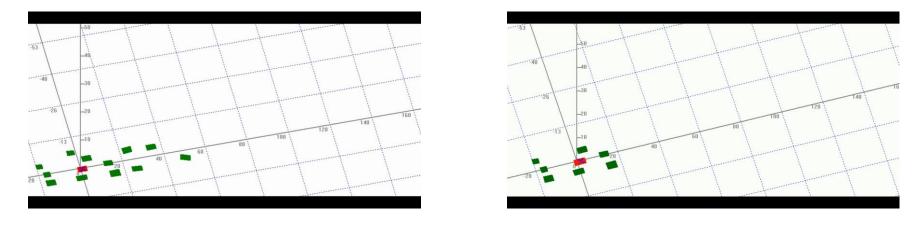
Learning Cost Function for Trajectory Selection

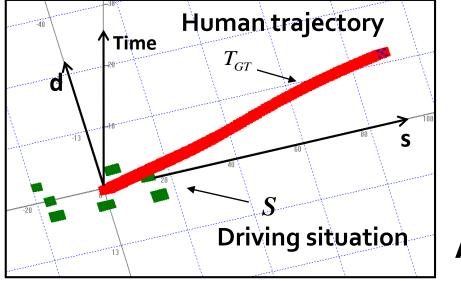


 $f_{\omega}(T_j) = \omega_1 * f_{Comfort} + \omega_2 * f_{Efficiency} + \omega_3 * f_{Safety} + \omega_4 * f_{LaneIncentive}$

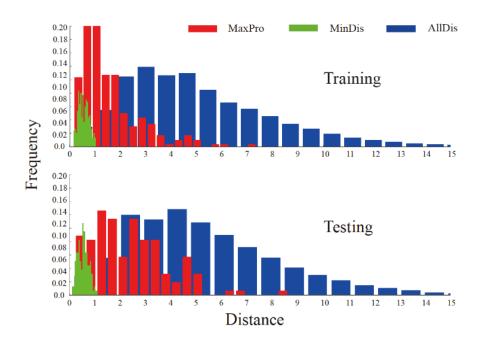
Fitting the coefficients of the cost function on human driving data.

Human Driven Data Sample





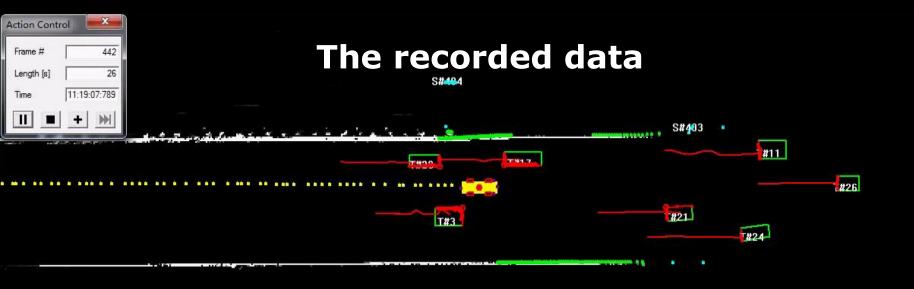
Experimental Results



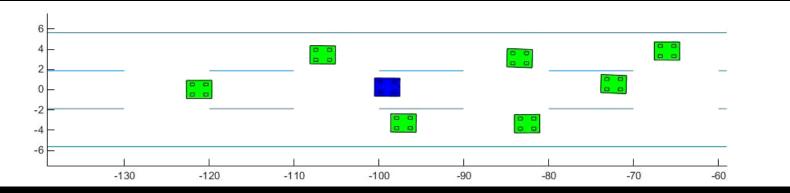
Similarity of the Planned Trajectory

	Training			Testing		
	CF(H)	LLC(H)	RLC(H)	CF(H)	LLC(H)	RLC(H)
CF(P)	77	4	8	34	2	10
LLC(P)	9	83	3	11	38	2
RLC(P)	4	3	79	8	5	33
Accuracy	85.6%	92.2%	87.8%	64.2%	84.4%	73.3%

Similarity of the maneuver decision



Replay the data of scene vehicle, simulate the trajectory candidates of different similarity



000

Bottlenecks of the Naturalistic Driving Behavior Study

Can not perform closed-loop test

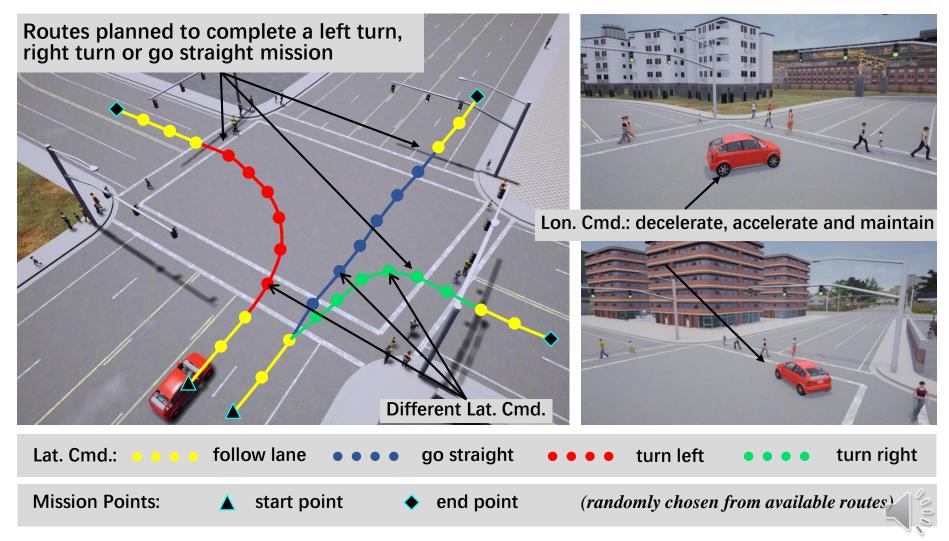
- The learnt model can only be evaluated on dataset.
- However, evaluating control models on static datasets is not enough due to compounding error caused by covariate shift.
- → High-fidelity simulator CARLA

Inaccurate trajectory data

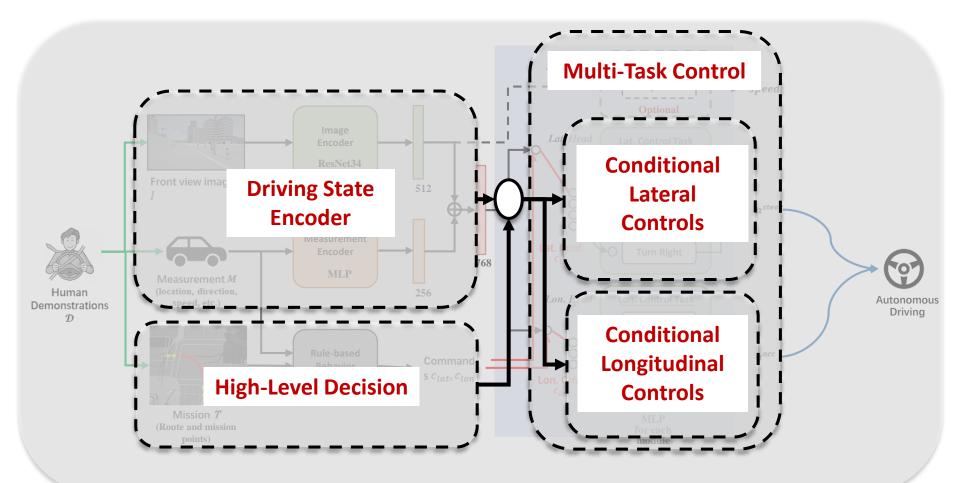
- The accuracy of the estimated acceleration of surrounding vehicles is poor.
- In densely interacting traffic scenarios, such as crowded intersections, the accuracy of the trajectory greatly limits the accuracy of the model.

→ End-to-end driving policy learning at intersection scenes

Imitation learning for humanized autonomous navigation at crowded intersections using CARLA Simulator

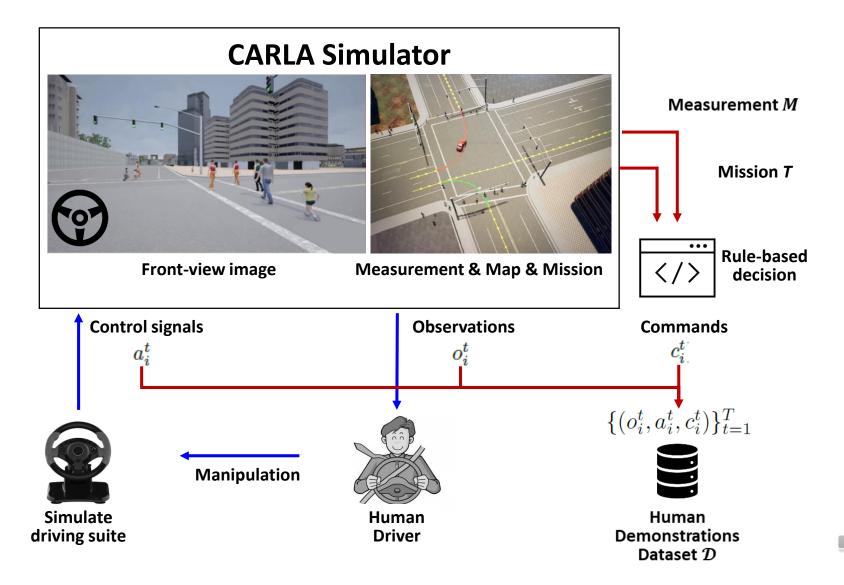


Methodology Multi-Task Conditional Imitation Learning



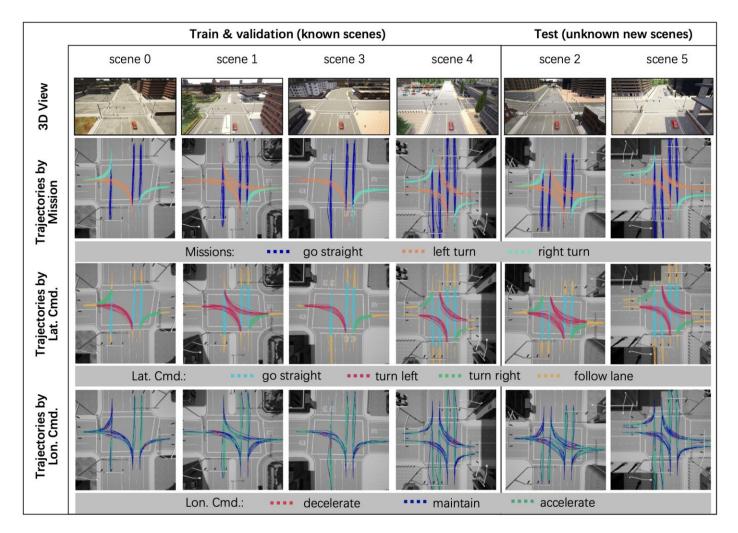
Zeyu Zhu, Huijing Zhao, Multi-Task Conditional Imitation Learning for Autonomous Navigation at Crowded Intersections, arXiv:2202.10124v1. 111

Human Driving Data Collection



New Benchmark "IntersectNav" on CARLA

https://github.com/zhackzey/IntersectNav

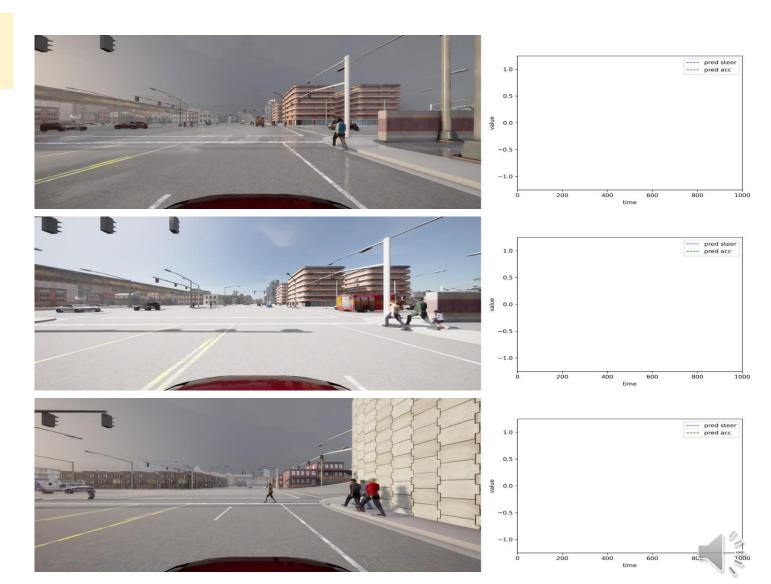


6 intersections, 8 weather conditions 2 dataset: Ped-Only, Ped-Veh, over 1300 trajectories and 40 hours data

Test Results - Succeed Cases

Train weather

Train scene

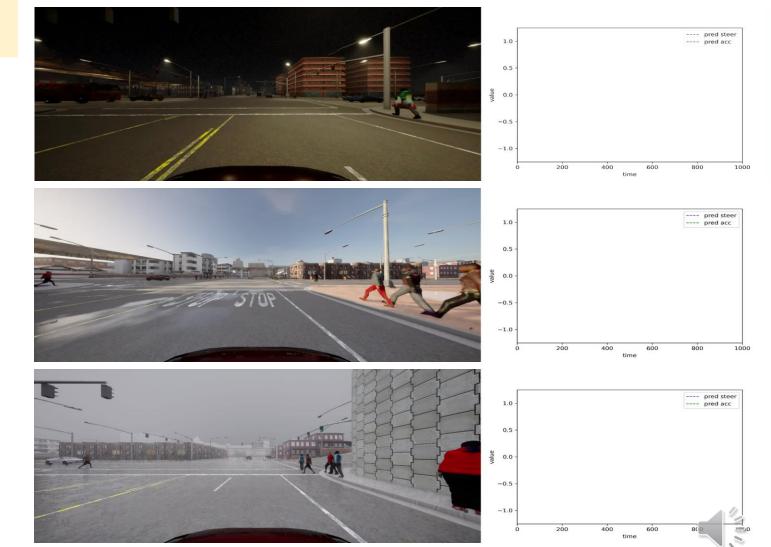


New scene

Test Results - Succeed Cases

New weather

Train scene



New scene

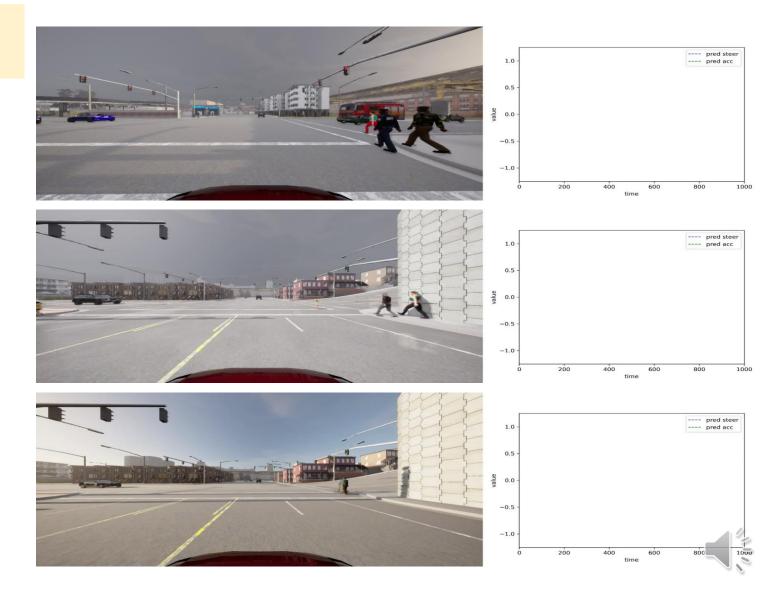
New scene

Test Results - Failed Cases

Train weather

Train scene Collision

New scene Collision



New scene Timeout

Test Results - Failed Cases

New scene

Lane Invasion

New scene

Lane Invasion

Closed-loop Evaluation on task completion and control quality

Models	Succ. Rt.	Time. Rt.	Lane. Rt.	Colli. Rt.
TS & TW	(%) ↑	(%)↓	(%)↓	(%)↓
CIL	57.3 ± 2.5	21.1 ± 2.6	5.3 ± 1.7	16.3 ± 2.6
CILRS	67.5 ± 2.7	9.1 ± 3.5	6.4 ± 2.2	17.0 ± 2.8
Ours	91.2 ± 2.0	1.6 ± 2.6	$\textbf{4.5} \pm \textbf{1.8}$	$\textbf{2.7} \pm \textbf{1.9}$
TS & NW				
CIL	52.5 ± 3.1	21.9 ± 3.4	4.8 ± 1.4	20.8 ± 2.5
CILRS	46.7 ± 5.3	33.9 ± 5.6	2.1 ± 1.4	17.3 ± 2.2
Ours	$\textbf{88.6} \pm \textbf{2.0}$	1.9 ± 2.6	6.6 ± 1.8	$\textbf{2.9} \pm \textbf{1.9}$
NS& TW				
CIL	50.4 ± 2.4	23.3 ± 4.2	4.6 ± 3.1	21.7 ± 3.1
CILRS	53.3 ± 2.8	28.7 ± 3.3	2.5 ± 2.4	15.5 ± 2.8
Ours	$\textbf{88.8} \pm \textbf{3.7}$	3.1 ± 2.6	4.6 ± 1.6	3.5 ± 1.6
NS & NW				
CIL	40.8 ± 4.9	27.1 ± 8.5	1.3 ± 1.7	30.8 ± 5.7
CILRS	32.1 ± 5.5	46.3 ± 6.1	0.4 ± 0.8	21.2 ± 3.3
Ours	86.8 ± 3.6	$\textbf{3.8} \pm \textbf{2.5}$	4.7 ± 1.6	4.7 ± 1.6

Models	Intense Actions	Disruption to Pedestrians	Deviation from Waypoint	Deviation from Destination	Heading Angle Deviation	Total Steps
TS & TW	#,↓	#,↓	m, ↓	m, ↓	°,↓	#,↓
CIL	0.440 ± 0.108	88.848 ± 35.771	1.988 ± 0.233	7.365 ± 0.272	17.187 ± 3.157	385.013 ± 18.176
CILRS	1.300 ± 0.503	75.448 ± 29.667	1.107 ± 0.085	4.598 ± 0.375	14.271 ± 1.615	310.642 ± 33.795
Ours	$\textbf{0.000} \pm \textbf{0.000}$	17.219 ± 17.671	$\textbf{0.520} \pm \textbf{0.029}$	1.253 ± 0.396	$\textbf{4.368} \pm \textbf{0.466}$	308.376 ± 14.951
TS & NW						
CIL	0.064 ± 0.035	34.435 ± 7.286	1.527 ± 0.147	9.114 ± 0.814	17.467 ± 1.143	375.848 ± 24.455
CILRS	0.003 ± 0.005	124.845 ± 54.668	1.117 ± 0.126	9.123 ± 0.949	20.901 ± 1.420	482.261 ± 39.933
Ours	$\textbf{0.000} \pm \textbf{0.000}$	$\textbf{17.224} \pm \textbf{17.680}$	$\textbf{0.520} \pm \textbf{0.029}$	1.253 ± 0.396	$\textbf{4.369} \pm \textbf{0.464}$	308.392 ± 14.944
NS & TW						
CIL	0.167 ± 0.137	110.867 ± 39.536	1.853 ± 0.376	9.502 ± 0.600	21.407 ± 1.808	376.825 ± 16.704
CILRS	0.267 ± 0.077	192.037 ± 36.298	1.361 ± 0.166	7.922 ± 1.098	19.161 ± 3.063	514.867 ± 29.989
Ours	$\textbf{0.000} \pm \textbf{0.000}$	36.458 ± 31.388	$\textbf{0.581} \pm \textbf{0.012}$	$\textbf{1.390} \pm \textbf{0.472}$	$\textbf{5.437} \pm \textbf{0.679}$	339.292 ± 16.309
NS & NW						
CIL	0.104 ± 0.077	35.142 ± 8.137	1.159 ± 0.148	10.471 ± 0.942	24.189 ± 2.445	425.917 ± 64.926
CILRS	0.004 ± 0.008	144.762 ± 46.157	0.868 ± 0.165	14.279 ± 1.106	26.983 ± 0.170	578.217 ± 40.494
Ours	$\textbf{0.000} \pm \textbf{0.000}$	37.492 ± 32.246	$\textbf{0.582} \pm \textbf{0.012}$	$\textbf{1.426} \pm \textbf{0.381}$	$\textbf{5.988} \pm \textbf{0.111}$	346.625 ± 15.805

Conclusion and Future Works

- Learning from Human Driver Data for Humanized Autonomous Driving at Dynamic Scenes
 - Early works: on-road naturalistic driving data based study, traditional modular-based approach using trajectory data as the input
 - Pros: real-world data, the model is explainable
 - **Cons**: no closed loop evaluation, difficult at densely interacting scenes due to poor trajectory accuracy
 - Current work: CARLA simulator-based study, end-to-end approach using front image as the input
 - Pros: closed loop evaluation, adapt to densely interacting scenes
 - **Cons**: simulation is unreal, reliability of end-to-end model faces still big challenges
- Future works: close the sim-to-real loop; combine the mc end-to-end approaches

IntersectNav Benchmark: https://github.com/zhackzey/IntersectNav

POSS Dataset: http://www.poss.pku.edu.cn/download.html

> More Information of POSS-Lab: <u>http://www.poss.pku.edu.cn/</u>

Contact: Huijing Zhao , <u>zhaohj@pku.edu.cn</u> Zeyu Zhu, <u>zhuzeyu@pku.edu.cn</u>

