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• New methods

- Semantic Segmentation of  3D LiDAR Data in Dynamic Scene Using Semi-Supervised Learning, T.ITS2020

- Incorporating Human Domain Knowledge in 3D LiDAR-based Semantic Segmentation, T.IV2020

- Scene-Adaptive Off-Road Detection Using a Monocular Camera, T.ITS 2018

- Off-Road Drivable Area Extraction Using 3D LiDAR Data, IV2019

- Fine-Grained Off-Road Semantic Segmentation and Mapping via Contrastive Learning, IROS2021

- An Active and Contrastive Learning Framework for Fine-Grained Off-Road Semantic Segmentation, arXiv2022

• Survey and analysis

- Are We Hungry for 3D LiDAR Data for Semantic Segmentation? A Survey of  Datasets and Methods, T.ITS2021

- Understanding the Challenges When 3D Semantic Segmentation Faces Class Imbalanced and OOD Data, arXiv2022

• New dataset

- SemanticPOSS , IV2020

The leading students of these works!

Jilin Mei Biao Gao Yancheng Pan
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SemanticPOSS <http: //www.poss.pku.edu.cn/semanticposs.html>
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Problem Formulation

Applications: a key technique for a mobile agent to traverse at complex environments

Deep Learning methods have been the focus of the studies in solving the problem.
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Deep learning methods are mostly data-driven

• Data hunger problem
- Even severe for 3DSS task!

(Are We Hungry for 3D LiDAR Data for Semantic Segmentation? 

A Survey of Datasets and Methods? T.ITS2021)

• Class-imbalanced (Long-tailed) data
- Real world is class-imbalanced!

• Out-of-distribution (OOD) data
- The open world problem!

• Aware its unsureness
- A key issue when deploying an AI system to safety-

critical applications!

- Trust scoring by thresholding on e.g. softmax
confidence, ODIN etc..
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Questions:

• How does the class imbalance problem affect 3DSS model performance?

• Can 3DSS model be aware of its unsureness? 

➢ Can it detect whether the category prediction is correct or not, or whether the 
input sample is an ID or OOD?
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classes of 
sufficient training samples 

classes of 
few training samples 

classes of 
no training samples 

Datasets

Class Imbalance OOD Data

How does the class 
imbalance problem affect 

3DSS models' performance?

Can the model be 
aware of its unsureness?

3DSS Model

whether the category 
prediction is correct or not?

whether the input 
sample is an ID or OOD?

Trust Scoring
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Q: How class-imbalance problem affect model performance?

Experiment 1
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PointNet++ RandLA-Net

Cylinder3D

Point-based method Point-based method

Voxel-based method

Traditional 3DSS model State-of-the-art 3DSS models

3DSS Models
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• The performance of PointNet++ has certain correlation with data size.
• The performance of some small classes has been greatly improved by RandLA-Net and Cylinder3D.

Results of Experiment 1
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• The performance is not only related with data size.
• The performance of some small classes can be improved, but some are hard.

Accuracy Analysis
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• wPre (weighted Precision): A new metric to account for imbalanced class size.

PD = Plants
Confusion Analysis
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• Plants has high-accuracy but easy to be confused.
• wPre (weighted Precision) can evaluate this property by accounting for imbalanced class size.

Confusion Analysis

13



3DVCR Group, Department of Machine Intelligence

• There are intra-class diversity and inter-class ambiguity, who are the main reason of confusing.
• The classes are not only imbalanced on data size, but also their nature, who has been less studied in 

literature.

Feature Analysis
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Q: Can 3DSS model be aware of its unsureness facing class-imbalanced and 
OOD data?   → Can the model be aware its correct or wrong, ID or OOD?

3DSS Model3D Point Cloud

x z

Trust Scoring

Train: SubKITTI; Test: AugKITTI

3DSS Models: PointNet++, Cylinder3D, RandLA-Net

Trust Scores: Softmax confidence, Uncertainty, ODIN, MD

I/O; C/W
Prediction

gf

Experiment 2
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• OOD classes: people, rider
• ID classes: others

• Train dataset - SubKITTI
• SemanticKITTI frames that have no people and rider data.

• Test dataset - AugKITTI
• SemanticKITTI frames that are augmented with the people and rider data from 

SemanticPOSS.

Dataset
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Dataset Augmentation
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• Task1 – I/O: discriminate whether the data is ID or OOD

• Task2 – C/W: discriminate whether the predicted semantic class is 
Correct or Wrong without OOD

• Task3 – C/W with OOD: discriminate whether the predicted semantic 
class is C/W with OOD
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Trust score: Softmax confidence;        3DSS model: Cylinder3D

Results of Experiment 2
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TSD: Trust score distribution 

Confusion Analysis
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TSD: Trust score distribution
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TSD: TRUST SCORE DISTRIBUTION

TP

FPTN
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g(x)≤ δ g(x)> δ

• Some classes have very small FP and TN, and even a small FP could yield a high FPR
• If classes are highly imbalanced, TPR, FPR and AUROC may not sufficiently evaluate the performance.

high FPR

high FPR

TSD: Trust score distribution
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• Task1, car, plants and bike have poor precisions.
• Task2, plants and fence have poor precisions.
• Task3, car, plants and bike are the most affected by OOD.

AUROC with wPre
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• This work conducted experimental studies to understand the challenges 

of deep 3DSS models facing class imbalanced and OOD data. 

• Two experiments are conducted with intensive analysis, and a 3D LiDAR 

dataset augmentation method, evaluation metrics that accounting for 

class-imbalance problem, a visual analysis method are developed.  

Conclusion
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• Classes are not imbalanced only on data size.
• Intraclass diversity and interclass ambiguity need to be faced to improve the trustfulness of 3DSS, 

where semantic gap and data gap need to be studied at real-world scenes.  

Future Works
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More results:
Understanding the Challenges When 3D Semantic Segmentation Faces 

Class Imbalanced and OOD Data, arXiv2022

POSS dataset: 
http://www.poss.pku.edu.cn/download.html

More information of POSS-Lab:
http://www.poss.pku.edu.cn/

Contact:
Yancheng Pan, panyancheng@pku.edu.cn

Huijing Zhao , zhaohj@pku.edu.cn
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