Reading group	
Alexandre Vieira	
Introduction	Reading group: Mathematical Control Theory by
Systems	Eduardo D. Sontag
Discrete time	Ludurdo Dr Contug
Exercices	Alexandre Vieira
	23rd November 2016

Plenty application in engineering: automobile, microprocessors, robotics, airplanes, drones...

We assume small variations of θ , and we end up with equation :

$$\ddot{\theta} - \theta = u$$

How to bring, from any point $\theta(0)$ and $\dot{\theta}(0)$ small enough, the system to $(\theta, \dot{\theta}) = (0, 0)$?

$$\ddot{ heta}(t) - heta(t) = u(t) = 3e^{-2t}$$

with $\theta(0) = 1$ and $\dot{\theta}(0) = -2$: stabilizes the system to (0,0).

But if we add a little disturbance to the initial conditions: $\dot{\theta}(0) = -2 + \varepsilon$, then the system $\theta(t) \xrightarrow[t \to +\infty]{} +\infty$.

$$\ddot{\theta} - \theta = u$$

If we choose a control proportional to the angle: $u = \alpha \theta$, then we will never approach (0,0). This can be shown for the whole system: left as an exercice! However, there exist positive scalars α and β such that the control

$$u = -\alpha\theta - \beta\dot{\theta}$$

stabilizes the system at (0,0). Only problem : how to know $\theta(t)$ and $\dot{\theta}(t)$?

$$\ddot{\theta} - \theta = u$$

Writing $x = (\theta, \dot{\theta})^{\mathsf{T}}$, we rewrite the system as:

$$\dot{x} = \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}_{=A} x + \underbrace{\begin{pmatrix} 0 \\ 1 \end{pmatrix}}_{=B} u$$

We apply a linear feedback u = Kx:

$$\dot{x} = (A + BK)x$$

How to choose K? Such that A + BK has negative eigenvalues!

Description of a system

Reading group

Alexandre Vieira

Introduction

Systems

Discrete time

Exercices

Definition

- A system or machine consists of:
 - A time set \mathcal{T} , which is a subgroup of $(\mathbb{R},+)$
 - \bullet A non empty-set ${\mathcal X}$ called the state-space
 - ${\scriptstyle \bullet}$ A non empty-set ${\cal U}$ called a control-value space
 - A map $\phi : \mathcal{D}_{\phi} \to \mathcal{X}$ called the transition map, which is defined on a subset \mathcal{D}_{ϕ} of

$$\left\{(\tau,\sigma,x,\omega)|\sigma,\tau\in\mathcal{T},\ \sigma\leq\tau,\ x\in\mathcal{X},\omega\in\mathcal{U}^{[\sigma,\tau[}\right\}\right\}$$

Description of a linear system

Reading group

Alexandre Vieira

Introduction

Systems

Discrete time

Exercices

$$\dot{x}(t) = Ax(t) + Bu(t)$$
 for $t \in \mathbb{R}$

For a given $u(\cdot) \in \mathbb{R}^m$ and $x(0) \in \mathbb{R}^n$, we have a unique solution:

$$x(t) = e^{At}x(0) + e^{At}\int_0^t e^{-As}Bu(s)ds$$

• Time set: $\mathcal{T} = \mathbb{R}$

- State space: $\mathcal{X} = \mathbb{R}^n$
- Control-value space: $\mathcal{U} = \mathbb{R}^m$
- Transition map: $\phi(\tau, \sigma, x, \omega) = e^{A(\tau-\sigma)}x + e^{A\tau} \int_{\sigma}^{\tau} e^{-As} B\omega(s) ds$

Description of a system

Reading group

Alexandre Vieira

Introduction

Systems

Discrete time

Exercices

Definition

A system $\Sigma(\mathcal{T}, \mathcal{X}, \mathcal{U}, \phi)$ must comply with:

- Nontriviality: for all state $x \in \mathcal{X}$, there exist at least one pair $(\sigma, \tau) \in \mathcal{T}^2$, $\sigma < \tau$ and $\omega \in \mathcal{U}^{[\sigma, \tau]}$ such that ω is admissibile for x, i.e. $(\tau, \sigma, x, \omega) \in \mathcal{D}_{\phi}$.
- Restriction: If $\omega \in \mathcal{U}^{[\sigma,\mu[}$ is admissible for x, then for each $\tau \in [\sigma,\mu[, \omega_1 = \omega_{\mid [\sigma,\tau[}$ is also admissible for x and $\omega_{\mid [\tau,\mu[}$ is admissible for $\phi(\tau,\sigma,x,\omega_1)$.

Description of a system

Reading group

Alexandre Vieira

Introduction

Systems

Discrete time

Exercices

Definition

A system $\Sigma(\mathcal{T}, \mathcal{X}, \mathcal{U}, \phi)$ must comply with:

• Semigroup: If σ , τ , μ are any three elements of \mathcal{T} so that $\sigma < \tau < \mu$, if $\omega_1 \in \mathcal{U}^{[\sigma,\tau[}$ and $\omega_2 \in \mathcal{U}^{[\tau,\mu[}$, and if x is a state so that

$$\phi(\tau, \sigma, x, \omega_1) = x_1$$
 and $\phi(\mu, \tau, x_1, \omega_2) = x_2$

then $\omega = \omega_1 \omega_2$ is also admissible for x and $\phi(\mu, \tau, x, \omega) = x_2$.

• Identity: For each $\sigma \in \mathcal{T}$ and each $x \in \mathcal{X}$, the empty sequence $\diamond \in \mathcal{U}^{[\sigma,\sigma[}$ is admissible for x and $\phi(\sigma,\sigma,x,\diamond) = x$.

Output

Reading group

Alexandre Vieira

Introduction

Systems

Discrete time

Exercices

Definition

A system with output is given by a system $\boldsymbol{\Sigma}$ together with:

- \bullet A set ${\mathcal Y}$ called the measurement-value or output-value space
- A map $h: \mathcal{T} \times \mathcal{X} \to \mathcal{Y}$ called the readout or measurement map

Trajectory

Reading group

Alexandre Vieira

Introduction

Systems

Discrete time

Exercices

Definition

A trajectory Γ for the system Σ on the interval $\mathcal{I} \subseteq \mathcal{T}$ is a pair of function $(\xi, \omega) \in \mathcal{X}^{\mathcal{I}} \times \mathcal{U}^{\mathcal{I}}$ such that

$$\xi(\tau) = \phi(\tau, \sigma, \xi(\sigma), \omega_{|[\omega, \tau[})$$

holds for each pair $\sigma, \tau \in \mathcal{I}, \sigma < \tau$. For a given ω , we call such ξ a path. We call $\xi(\sigma)$ the initial state, $\xi(\tau)$ the terminal state.

Definition

 $\boldsymbol{\Sigma}$ is said complete if every input is admissible for every state:

$$\mathcal{D}_{\phi} = \left\{ (au, \sigma, x, \omega) | \sigma, au \in \mathcal{T}, \ \sigma \leq au, \ x \in \mathcal{X}, \omega \in \mathcal{U}^{[\sigma, au[}
ight\}$$

	Discrete systems
Reading group Alexandre Vieira	Definition
Introduction	A system is said discrete if $\mathcal{T}=\mathbb{Z}.$
Systems Discrete time	We define the transition mapping by
Exercices	$\begin{array}{ll} \mathcal{P}: & \mathcal{E} \to & \mathcal{X} \\ & (t,x,u) \mapsto & \mathcal{P}(t,x,u) \end{array}$ where \mathcal{E} is a subset of $\mathbb{Z} \times \mathcal{X} \times \mathcal{U}$. For all t in \mathbb{Z} : $x(t+1) = \mathcal{P}(t,x(t),\omega(t))$

Linear discrete systems

Reading group

Alexandre Vieira

Introduction

Systems

Discrete time

Exercices

Definition

A discrete time system Σ is linear (over field \mathbb{K}) if:

- Σ is complete
- $\mathcal{P}(t,\cdot,\cdot)$ is linear for each $t\in\mathbb{Z}$
- If it has output in addition:
 - \mathcal{Y} is a vector space
 - $h(t, \cdot)$ is linear for each $t \in \mathbb{Z}$.

The system is finite dimensional if \mathcal{X} and \mathcal{U} (and, if it exists, \mathcal{Y}) are finite dimensional. In that case, we call dimension of Σ the dimension of \mathcal{X} .

Linear discrete systems

Reading group

Alexandre Vieira

Introduction

Systems

Discrete time

Exercices

If Σ is linear, there exists linear maps $A(t) : \mathcal{X} \to \mathcal{X}$, $B(t) : \mathcal{U} \to \mathcal{X}$ and $C(t) : \mathcal{X} \to \mathcal{Y}$ such that :

$$\mathcal{P}(t, x, u) = A(t)x + B(t)u$$

 $h(t, x) = C(t)x$

Smooth discrete systems

Reading group

Alexandre Vieira

Introduction

Systems

Discrete time

Exercices

We denote $\mathcal{E}_t = \{(x, u) | (t, x, u) \in \mathcal{E}\}$ the domain of $\mathcal{P}(t, \cdot, \cdot)$.

Definition

A discrete time system (over field \mathbb{K}) Σ is \mathcal{C}^k if, for some intergers n and m:

- \mathcal{X} is an open subset of \mathbb{K}^n
- $\circ \ \mathcal{U}$ is an open subset of \mathbb{K}^m
- For each t ∈ Z, the set E_t is open and the map P(t, ·, ·) is of class C^k there.

If it has output in addition:

- $\mathcal Y$ is an open subset of $\mathbb K^p$
- $h(t, \cdot)$ is of class C^k .

Smooth discrete systems

Reading group

Alexandre Vieira

Introduction

Systems

Discrete time

Exercices

Definition

Let Σ be a \mathcal{C}^1 discrete time system over \mathbb{R} , and assume that $\Gamma = (\overline{\xi}, \overline{\omega})$ is a trajectory on an interval \mathcal{I} . The linearization of Σ along Γ is the discrete-time linear system $\Sigma_*[\Gamma]$ with description $(\mathbb{R}^n, \mathbb{R}^m, \mathcal{P}_*)$ where :

$$\forall (x, u) \in \mathbb{R}^n \times \mathbb{R}^m, \ \mathcal{P}_*(t, x, u) = A(t)x + B(t)u$$

where $A(t) = \mathcal{P}_x(t, \overline{\xi}(t), \overline{\omega}(t))$ and $B(t) = \mathcal{P}_u(t, \overline{\xi}(t), \overline{\omega}(t))$ for all $t \in \mathcal{I}$ and A(t) = B(t) = 0 for all $t \notin \mathcal{I}$. If Σ is a system with outputs, then the discrete-time linear system $\Sigma_*[\Gamma]$ admits as readout map:

$$h_*(t,x)=C(t)x$$

where $C(t) = h_x(t, \overline{\xi}(t))$ if $t \in \mathcal{I}$, C(t) = 0 otherwise.

Exercices

Reading group

Alexandre Vieira

Introduction

Systems

Discrete time

Exercices

- Exercice 1.2.1, 1.4.2, 2.4.2 seem pretty cool!
- Another one to test if you got it well: start with the transition mapping of a linear discrete-time system

$$x(t+1) = A(t)x(t) + B(t)u(t)$$

and check if it actually defines a system (meaning, make sure that the transition map is:

$$\begin{aligned} x(\tau) &= \phi(\tau, \sigma, x(\sigma), u) \\ &= A^{(\tau-\sigma)}x(\sigma) + \sum_{k=\sigma}^{\tau-1} A^{k-\sigma} Bu(\tau-\sigma-1-k) \end{aligned}$$

and check if it complies with all the axioms in the definition of a system).