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Definitions and preliminar results

We consider functions from the whole space to the extended real line:

f : Rn → R = R ∪ {+∞}

Definition (Effective domain)

dom (f ) = {x ∈ Rn : f (x) < +∞}

Example: Indicator function

Let C ⊂ Rn be a set and define the indicator function of C as

δC (x) =

{
0 x ∈ C

+∞ else;

then
arg min

x∈C
f (x) = arg min

x∈Rn
{ f (x) + δC (x) }
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Definitions and preliminar results

Definition (Convex/Concave function: Jensen’s inequality)

A function f : Rn → R is said to be convex if for every x , y ∈ Rn and for
every θ ∈ [0, 1] it holds

f (θx + (1− θ) y) ≤ θf (x) + (1− θ) f (y);

f is said to be concave if −f is convex

Geometrical interpretation of convexity:

The segment between (x , f (x)) and (y , f (y)) lies above the graph of f
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Definitions and preliminar results

Example: Affine functions

A function is both convex and concave if and only if is affine
(i.e.: f (x) = 〈a, x〉+ b, for some a ∈ Rn and b ∈ R)

Proposition (Restriction to lines)

A function f is convex if and only if the function

g : t ∈ R 7−→ g(t) = f (x + tv)

is convex for every x , v ∈ Rn and t ∈ R such that x + tv ∈ dom (f )
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Definitions and preliminar results

Extensions of Jensen’s inequality

If f is a convex function, then

for every (xk)k in dom (f ) and for every (θk)k positive such that∑K
k=1 θk = 1:

f

(
K∑

k=1

θkxk

)
≤

K∑
k=1

θk f (xk) ;

for every S ⊆ dom (f ) and p(x) ≥ 0 on S such that
∫
S p(x) dx = 1:

f

(∫
S
p(x) x dx

)
≤
∫
S
p(x)f (x) dx

Proposition

A function f is convex if and only if f (E [x ]) ≤ E [f (x)] for every random
variable x such that x ∈ dom (f ) with probability one
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Examples and operations that preserve convexity

Examples of convex functions

Dimension one:

f (x) = eax on R, for any a ∈ R;

f (x) = |x |p on R, for p ≥ 1;

f (x) = − log(x) on R++;

f (x) = x log(x) on R++ (called negative entropy);

Higher dimension:

f (x) = ‖x‖ on Rn, where ‖ · ‖ is a generic norm;

f (x) = max (x1, . . . , xn) on Rn;

f (x) = log (ex1 + · · ·+ exn) on Rn;

f (x) = − (x1 · ... · xn)1/n on Rn
++ (geometric mean)
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Examples and operations that preserve convexity

Proposition (Composition with affine maps)

If f is convex, A ∈ Rn×m and b ∈ Rn, then g(x) = f (Ax + b) is convex

Proposition (Non-negative weighted sum and poitwise
maximum/supremum)

A. If (fk)k are convex functions and (wk)k positive weights, then are
convex also

g(x) = w1f1(x) + · · ·+ wK fK (x) and

h(x) = max {f1(x), · · · , fK (x)} ;

B. if f (x , y) is a convex function for every parameter y ∈ A and
w(y) ≥ 0 for every y ∈ A, then are convex also

g(x) =

∫
A
w(y)f (x , y) dy and

h(x) = sup
y∈A

f (x , y)
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Examples and operations that preserve convexity

Proposition (Composition with non-decreasing functions)

If

gi : Rn → R is convex; and

h : Rk → R is convex and non-decreasing in each argument,

then f = h ◦ (g1, . . . , gk) is convex

Remark:

If h : R→ R is convex and non-decreasing, then dom (h) can be only R,
(−∞, a) or (−∞, a]
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Examples and operations that preserve convexity

Proposition (Minimization)

If f is convex in (x , y) and C is a convex non-empty set, then

g (x) = inf
y∈C

f (x , y)

is convex (provided g (x) > −∞ for every x ∈ Rn)

Example:

The function ‖y − x‖ is convex in (x , y); then, if C ⊆ Rn is a convex set,
the function

distC (x) = inf
y∈C
‖y − x‖

is also convex
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First and Second order conditions

Convexity

Proposition (First order condition)

Let f be differentiable in dom (f ); then the following are equivalent:

f is a convex function: for every x , y ∈ Rn and θ ∈ [0, 1]

f (θx + (1− θ) y) ≤ θf (x) + (1− θ) f (y);

dom (f ) is convex set and for every x0, x ∈ dom (f )

f (x) ≥ f (x0) + 〈∇f (x0), x − x0〉;

dom (f ) is convex set and for every x0, x ∈ dom (f )

〈∇f (x)−∇f (x0), x − x0〉 ≥ 0

Remark: from local information to global information

If f is convex and ∇f (x0) = 0, then x0 is a global minimizer of f
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First and Second order conditions

Sketch of the proof (1)

f is convex ⇒ f (x) ≥ f (x0) + 〈∇f (x0), x − x0〉

From convexity, we have f (θx + (1− θ) x0) ≤ θf (x) + (1− θ) f (x0);
manipulating, we obtain that for every θ ∈ (0, 1)

f (x) ≥ f (x0) +
f (x0 + θ (x − x0))− f (x0)

θ
;

to conclude, take the limit as θ → 0+
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First and Second order conditions

Sketch of the proof (2)

f (x) ≥ f (x0) + 〈∇f (x0), x − x0〉 ⇒ 〈∇f (x)−∇f (x0), x − x0〉 ≥ 0

Interchanging the roles of x0 and x , we have{
f (x) ≥ f (x0) + 〈∇f (x0), x − x0〉 and

f (x0) ≥ f (x) + 〈∇f (x), x0 − x〉;

summing-up the two inequalities, we obtain the result
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First and Second order conditions

Sketch of the proof (3a)

〈∇f (x)−∇f (x0), x − x0〉 ≥ 0 ⇒ f is convex

For θ ∈ [0, 1], define the function

φ (θ) = f (θx + (1− θ) x0)− θf (x)− (1− θ) f (x0) ,

then φ (0) = φ (1) = 0 and

φ′ (θ) = 〈∇f (θx + (1− θ) x0) , x − x0〉 − f (x) + f (x0) ;

moreover, for 0 < θ1 < θ2 < 1 we have φ′ (θ1)− φ′ (θ2) ≤ 0, i.e.: φ′

is non-decreasing. Then there exists θ̄ ∈ (0, 1) such that φ′
(
θ̄
)

= 0.
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First and Second order conditions

Sketch of the proof (3b)

So φ is

- non-increasing in
[
0, θ̄
]

and

- non-decreasing in
[
θ̄, 1
]
;

then, finally,
φ (θ) ≤ 0 ∀θ ∈ [0, 1]
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First and Second order conditions

Proposition (Second order condition)

Let f be twice-differentiable; then f is convex if and only if dom (f ) is
convex and for every x0, x ∈ dom (f )

〈∇2f (x0) (x − x0) , (x − x0)〉 ≥ 0;

i.e.: ∇2f (x0) is positive semi-definite
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First and Second order conditions

Strict convexity

Proposition (First order condition)

Let f be differentiable in dom (f ); then the following are equivalent:

f is strictly convex: for every distinct x , y ∈ Rn and θ ∈ (0, 1)

f (θx + (1− θ) y) < θf (x) + (1− θ) f (y);

dom (f ) is convex set and for every distinct x0, x ∈ dom (f )

f (x) > f (x0) + 〈∇f (x0), x − x0〉;

dom (f ) is convex set and for every distinct x0, x ∈ dom (f )

〈∇f (x)−∇f (x0), x − x0〉 > 0

Remark: from local information to global information

If f is strictly convex, then it has at most one (global) minimizer
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First and Second order conditions

Proposition (Second order condition)

Let f be twice-differentiable; if dom (f ) is convex and ∀x0, x ∈ dom (f )

〈∇2f (x0) (x − x0) , (x − x0)〉 > 0

(i.e.: ∇2f (x0) is positive definite), then f is strictly convex

Counterexample

f (x) = x4 is strictly convex, but f ′′(0) = 0
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First and Second order conditions

Strong convexity

Proposition (First order condition)

Let f be differentiable in dom (f ); then the following are equivalent:

f is α-strongly convex: for every x , y ∈ Rn and θ ∈ [0, 1]

f (θx + (1− θ) y) +
α

2
θ (1− θ) ‖y − x‖2 ≤ θf (x) + (1− θ) f (y);

dom (f ) is convex set and for every x0, x ∈ dom (f )

f (x) ≥ f (x0) + 〈∇f (x0), x − x0〉+
α

2
‖x − x0‖2;

dom (f ) is convex set and for every x0, x ∈ dom (f )

〈∇f (x)−∇f (x0), x − x0〉 ≥ α‖x − x0‖2

Remark:

strong convexity ⇒ strict convexity ⇒ convexity
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First and Second order conditions

Proposition (Second order condition)

Let f be twice-differentiable; then f is strongly convex if and only if
dom (f ) is convex and for every x0, x ∈ dom (f )

〈∇2f (x0) (x − x0) , (x − x0)〉 ≥ α

2
‖x − x0‖2,

i.e.: ∇2f (x0) is α-uniformly elliptic
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Continuity

Continuity of Convex functions

Theorem

If f is convex, then it is continuous at every point of rel int dom (f )
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Exercises

Exercise (a)

Prove Hölder inequality: for every x , y ∈ Rn, p > 1 and q ∈ R+ such
that 1/p + 1/q = 1,

n∑
j=1

xjyj ≤

 n∑
j=1

|xj |p
1/p n∑

j=1

|yj |q
1/q

Hint: from convexity of function f (x) = −log(x), it holds that
aθb1−θ ≤ θa + (1− θ) for every a, b ≥ 0 and θ ∈ [0, 1]

Show that if g : Rn → R is convex and h : R→ R is convex and
non-decreasing, then f = h ◦ g is convex

A. in the case that g and h are both twice-differentiable and
dom (g) = dom (h) = R;

B. in the general case
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Exercises

Exercise (b)

Let C be a convex set and define the Minkowski function as

MC (x) = inf
{
t > 0 :

x

t
∈ C

}
.

A. What is dom (MC )?
B. Show that MC is

- homogeneous, i.e. that for every α ≥ 0 it holds MC (αx) = αMC (x);
and

- convex

C. Suppose that C is also closed, bounded, symmetric (if x ∈ C , then
−x ∈ C ) and has non-empty interior; show that MC is a norm. What is
the corresponding unit ball, i.e. subγ (MC )?
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Exercises

Exercise (c)

For x ∈ Rn we denote by x[i ] the i-th largest component of x , i.e.

x[1] ≥ x[2] ≥ · · · ≥ x[n];

show that the sum of the r largest elements of x , i.e.

f (x) =
r∑

i=1

x[i ],

is a convex function.

Hint: notice that f can be re-written as the maximum of all possible
sums of r different components of x , i.e.

f (x) = max {xi1 + · · ·+ xir : 1 ≤ i1 < · · · < ir ≤ n}
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