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Representation Theorem

Definition (Epigraph)

epi (f ) = {(x , α) ∈ Rn × R : f (x) ≤ α}

Definition (Sublevel sets)

For γ ∈ R,
subγ (f ) = {x ∈ Rn : f (x) ≤ γ}

Remark

dom (f ) =
⋃
γ∈R subγ (f );

argmin (f ) =
⋂
γ>inf f subγ (f )
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Representation Theorem

Definition (Quasi-convexity)

A function f is quasi-convex if subγ (f ) is a convex set for every γ ∈ R

Proposition

f is convex function if and only if epi (f ) is a convex set;

if f is a convex function, then f is a quasi-convex

Counterexamples: subγ (f ) is convex ∀γ ∈ R but f is not convex for

f1(x) = −ex (concave);

f2(x) =
√
|x | (nor convex, nor concave);

f3(x) = x3 (nor convex, nor concave)

C. Molinari (UTFSM) Convex Functions 05 December 2016 4 / 25



Representation Theorem

Definition (Lower-semicontinuity)

A function f is lower-semicontinuous if for every x0 ∈ dom (f )

f (x0) ≤ lim inf
x→x0

f (x)

Proposition

The following are equivalent

f is lower-semicontinuous;

epi (f ) is a closed set in Rn × R;

subγ (f ) is a closed set in Rn for every γ ∈ R

C. Molinari (UTFSM) Convex Functions 05 December 2016 5 / 25



Representation Theorem

Definition (Hyperplane)

An hyperplane in Rn is a subset H of the form

H = {x ∈ Rn : 〈a, x〉 = b} ,

where a ∈ Rn and b ∈ R

Theorem (Representation for Subsets)

C ⊆ Rn is convex and closed if and only if

C =
⋂
{H : H is an hyperplane and C ⊆ H}

(which implication is easy?)
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Representation Theorem

Definition (Affine function)

An affine function on Rn is a function g of the form

g (x) = 〈a, x〉+ b,

where a ∈ Rn and b ∈ R

Theorem (Representation for Functions)

f is convex and lower-semicontinuous if and only if

f (x) = sup {g (x) : g is an affine function and g (z) ≤ f (z) ∀z ∈ Rn}
(1)

(which implication is easy?)

Example: If f is convex with dom (f ) = Rn, than (1) holds. (why?)
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Fenchel Conjugate

Definition (Fenchel conjugate)

For f : Rn → R, the Fenchel conjugate of f is the function f ? : Rn → R
defined as

f ? (x) = sup
x∈Rn
{〈y , x〉 − f (x)}

Example: Support function

Given a subset C ⊂ Rn, we call support function of C the Fenchel
conjugate of indicator function of C , i.e.

δ?C (y) = sup
x∈C
〈y , x〉
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Fenchel Conjugate

Geometrical interpretation

Figura: The conjugate function f ? (y) is the maximum gap between the linear
function 〈y , x〉 and f (x)
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Fenchel Conjugate

Proposition

f ? is a convex and lower semi-continuous (wheter or not f is convex)

Proof: f ? is the pointwise supremum of affine functions

Proposition (Conjugate of the conjugate)

f is convex and lower-semicontinuos if and only if

f ?? = f

(which side is easy?)

In general: f ?? ≤ f (why?)
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Fenchel Conjugate

Proposition (Fenchel-Young inequality)

For every x , y ∈ Rn,
f (x) + f ? (y) ≥ 〈x , y〉 (2)

Proof: directly from the definition

Proposition (Legendre transform)

If f is convex and differentiable, then equality in (2) holds if and only if

y = ∇f (x)

Remark:

In particular, under the hypothesis of the previous Proposition, if for a
given y we can solve the equation y = ∇f (x̄), then we can compute
f ? (y) as

f ? (y) = 〈x̄ ,∇f (x̄)〉 − f (x̄)
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Fenchel Conjugate

Examples

Norm

Consider f (x) = ‖x‖; then f ? = δB∗
1 (0)

, i.e.

f ? (y) =

{
0 if ‖y‖∗ ≤ 1

+∞ otherwise

(where ‖ · ‖∗ is the dual norm to ‖ · ‖)

Norm squared

Consider f (x) = 1
2‖x‖

2; then

f ? (y) =
1

2
‖y‖2∗
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Quasi-Convexity

Definition

Definition (Quasi-convexity)

A function f is quasi-convex if subγ (f ) is a convex set for every γ ∈ R

Definition (Equivalent Def. by Generalized Jensen’s Inequality)

A function f is quasi-convex if dom (f ) is convex and for every
x , y ∈ dom (f ) and for every θ ∈ [0, 1]

f (θx + (1− θ)) ≤ max {f (x) , f (y)}

(Check the equivalence)

Example: the cardinality function (also called `0-“norm”), defined by

card (x) = |{i ∈ {1, . . . , n} : xi 6= 0}| ,

is quasi-concave on Rn
+
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Quasi-Convexity

Results

Proposition (Quasi-Convexity in R)

A continuous function on R is quasi-convex if and only if it is

non-decreasing; or

non-increasing; or

non-increasing in t ≤ c and non-decresing in t ≥ c for some
c ∈ dom (f )
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Quasi-Convexity

First/Second-Order Conditions

Proposition (First-Order Condition)

Suppose f is differentiable; then f is quasi-convex if and only if dom (f ) is
convex and for all x , y ∈ dom (f )

f (y) ≤ f (x) ⇒ 〈∇f (x) , y − x〉 ≤ 0

Geometrical Interpretation: if ∇f (x) 6= 0, it defines a supporting
hyperplane to subf (x) (f ) at the point x

Remark:

If f is only quasi-convex, ∇f (x) = 0 does not imply that x is a global
minimizer (example?)
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Quasi-Convexity

First/Second-Order Conditions

Proposition (Second-Order Condition)

Suppose f is twice-differentiable; if f is quasi-convex, then for all
x , y ∈ dom (f )

〈y , ∇f (x)〉 = 0 ⇒ 〈y , ∇2f (x) y〉 ≥ 0

Proposition (Partial Converse)

Suppose f is twice-differentiable; if for all x , y ∈ dom (f ), y 6= 0

〈y , ∇f (x)〉 = 0 ⇒ 〈y , ∇2f (x) y〉 > 0,

then f is quasi-convex
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Quasi-Convexity

Geometrical Interpretation

The condition

〈y , ∇f (x)〉 = 0 ⇒ 〈y , ∇2f (x) y〉 ≥ 0

means

for n = 1:
f ′ (x) = 0 ⇒ f ′′ (x) ≥ 0

(i.e., at every point with zero slope, the second derivative is
non-negative);

for generic n:

- whenever ∇f (x) = 0, then ∇2f (x) < 0;
- when ∇f (x) 6= 0, then ∇2f (x) is positive semi-definite on the

(n − 1)-dimensional subspace ∇f (x)⊥
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Quasi-Convexity

Proposition (Representation by family of convex functions)

Suppose that f is quasi-convex; then it exists a family of convex functions
φt : Rn → R, indexed by t ∈ R, such that

subt (f ) = sub0 (φt) ∀t ∈ R (3)

Indeed, we can always choose

φt (x) = δsubt(f ) (x) =

{
0 if f (x) ≤ t

+∞ else

Remark 1:

The representation is not unique, in general

Remark 2:

A necessary condition for φt to satisfy (3) is to be non-increasing in t for
every x ∈ Rn, i.e. φs (x) ≤ φt (x) whenever s ≥ t
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Exercises

Exercises (d)

(Example 3.21) Compute the conjugate of the following functions:

A. Affine function: f (x) = 〈a, x〉+ b, for x ∈ Rn;
B. Negative Logarithm: f (x) = − log (x), with dom (f ) = R++;
C. Exponential: f (x) = ex , for x ∈ R;
D. Negative Entropy: f (x) = x log (x), with dom (f ) = R+

(Exercise 3.36, 3.41) Compute the conjugate of

A. the Negative Normalized Entropy :

f (x) =
n∑

i=1

xi log

(
xi
〈1, x〉

)
, dom (f ) = Rn

++;

B. the Max-Function:
f (x) = max

i∈{1,...,n}
xi ;

C. the Sum of Largest Elements:

f (x) =
r∑

i=1

x[i ]
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Exercises

Exercises (e)

(Exercise 3.38) Prove Young’s inequality:

xy ≤ F (x) + G (y) ,

where f is an incresing function with f (0) = 0, g = f −1 is its inverse
and F ,G are defined by

F (x) =

∫ x

0
f (s) ds; and

G (y) =

∫ y

0
g (s) ds

Hint: notice that F and G are conjugates
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Exercises

Exercises (f)

(Exercise 3.39) Show the following properties of the Fenchel
conjugate:

A. Conjugate and Minimization, 1: defining

g (x) = inf
z
f (x , z) ,

where f (x , z) is a convex function in (x , z), express g? in terms of f ?;

B. Conjugate and Minimization, 2: for h convex, express the conjugate of

g (x) = inf
z
{h (z) : Az + b = x}

in terms of h?, A and b;

C. Conjugate of Conjugate: given a function f convex and lower
semi-continuous, show that f ?? = f
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Exercises

Exercises (g)

(Exercise 3.43) Show the First-Order Condition for quasi-convexity:
suppose f is differentiable; then f is quasi-convex if and only if
dom (f ) is convex and for all x , y ∈ dom (f )

f (y) ≤ f (x) ⇒ 〈∇f (x) , y − x〉 ≤ 0

(Exercise 3.46) Show that

- a function f : R→ R is quasi-linear (i.e., quasi-convex and
quasi-concave) if and only if it is monotone (non-decreasing or
non-increasing);

- a function f : Rn → R is quasi-linear if and only if it can be expressed
as

f (x) = g (〈a, x〉) ,
where a ∈ Rn and g : R→ R is monotone
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