y 4

{IN} .

dEX UMBRA b=/ SOLEM L—I INVENTEURS DU MONDE NUMERIQUE

S. Boyd and L. Vandenberghe - Convex Optimization

Chapter 3: Convex Functions

C. Molinari

PhD student at UTFSM
Internship at INRIA

05 December 2016

C. Molinari (UTFSM) Convex Functions 05 December 2016 1/25



Representation Theorem

Indice

© Representation Theorem

C. Molinari (UTFSM) Convex Functions 05 December 2016 2/25



Representation Theorem

Definition (Epigraph)
epi(f) ={(x,a) eR"xR: f(x) <a}

Definition (Sublevel sets)

For v € R,
sub, (f) ={xeR": f(x) <~}

o dom (f) = |J, g suby (f);
° argmin (f) = m’y>inff SUb7 (f)
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Representation Theorem

Definition (Quasi-convexity)

A function f is quasi-convex if sub., (f) is a convex set for every v € R

Proposition

e f is convex function if and only if epi(f) is a convex set;

e if f is a convex function, then f is a quasi-convex

Counterexamples: sub,, () is convex Vy € R but f is not convex for

e fi(x) = —e* (concave);
e f(x) = 1/|x| (nor convex, nor concave);

o f3(x) = x> (nor convex, nor concave)
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Representation Theorem

Definition (Lower-semicontinuity)
A function f is lower-semicontinuous if for every xg € dom (f)

f(x0) < liminf f(x)

X—X0

Proposition
The following are equivalent

@ f is lower-semicontinuous;
e epi(f) is a closed set in R” x R;
@ sub, (f) is a closed set in R” for every v € R
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Representation Theorem

Definition (Hyperplane)

An hyperplane in R" is a subset H of the form
H={xeR": (a, x)= b},

where a€ R" and be R

Theorem (Representation for Subsets)

C C R" is convex and closed if and only if

C= ﬂ{’H : H is an hyperplane and C C H}

(which implication is easy?)
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Definition (Affine function)
An affine function on R" is a function g of the form
g (x) = (a, x) + b,

where a€ R" and b e R

Theorem (Representation for Functions)

f is convex and lower-semicontinuous if and only if

f(x) =sup{g(x): g is an affine function and g (z) < f (z) Vz € R"}

(1)

v

(which implication is easy?)

Example: If f is convex with dom (f) = R”, than (1) holds. (why?)
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Fenchel Conjugate

Definition (Fenchel conjugate)

For f : R" — R, the Fenchel conjugate of f is the function f* : R” — R
defined as

f*(x) = sup {({y, x) = f(x)}
xERN

Example: Support function

Given a subset C C R”, we call support function of C the Fenchel
conjugate of indicator function of C, i.e.

6¢ (y) = sup(y, x)
xeC
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Fenchel Conjugate
Geometrical interpretation

(0, —f*(v))

Y

Figura: The conjugate function f* (y) is the maximum gap between the linear

function (y, x) and f (x)
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Fenchel Conjugate

Proposition

f* is a convex and lower semi-continuous (wheter or not f is convex)

Proof: f* is the pointwise supremum of affine functions

Proposition (Conjugate of the conjugate)

f is convex and lower-semicontinuos if and only if

f = f

(which side is easy?)

In general: f** < f (why?)
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Fenchel Conjugate

Proposition (Fenchel-Young inequality)

For every x,y € R",
FO)+ 7 (y) = (x, y) (2)

Proof: directly from the definition

Proposition (Legendre transform)

If f is convex and differentiable, then equality in (2) holds if and only if

y =Vf(x)

In particular, under the hypothesis of the previous Proposition, if for a
given y we can solve the equation y = Vf(X), then we can compute

*(y) as

*(y) = (%, VI (%)) — f(X)
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Fenchel Conjugate
Examples

Norm

Consider f (x) = [|x||; then f* = dp:(q), i-e.

. 0 if [lyll« <1
f(y):{ Iy

+00 otherwise

(where || - ||« is the dual norm to || - ||)

Norm squared

Consider f (x) = 1[x||%; then

X 1
f*(y) = §||yH§
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Quasi-Convexity
Definition

Definition (Quasi-convexity)

A function f is quasi-convex if sub., (f) is a convex set for every v € R

Definition (Equivalent Def. by Generalized Jensen’s Inequality)

A function f is quasi-convex if dom (f) is convex and for every
x,y € dom (f) and for every 6 € [0, 1]

f(Ox+(1-0)) <max{f(x),f(y)}

(Check the equivalence)

Example: the cardinality function (also called £°-“norm"), defined by
card(x) = [{i € {1,...,n} : x; # 0},

is quasi-concave on R’}
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Quasi-Convexity

Results

Proposition (Quasi-Convexity in R)

A continuous function on R is quasi-convex if and only if it is
@ non-decreasing; or
@ non-increasing; or

@ non-increasing in t < ¢ and non-decresing in t > ¢ for some
¢ € dom (f)
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Quasi-Convexity
First/Second-Order Conditions

Proposition (First-Order Condition)

Suppose f is differentiable; then f is quasi-convex if and only if dom (f) is
convex and for all x,y € dom (f)

fly)<f(x) = (VF(x), y—x)<0

Geometrical Interpretation: if Vf (x) # 0, it defines a supporting
hyperplane to subg(,) (f) at the point x

If f is only quasi-convex, Vf (x) = 0 does not imply that x is a global
minimizer (example?)
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Quasi-Convexity

First/Second-Order Conditions

Proposition (Second-Order Condition)

Suppose f is twice-differentiable; if f is quasi-convex, then for all
x,y € dom (f)

(y, VF(x)) =0 = (y, V*f(x)y)>0

Proposition (Partial Converse)

Suppose f is twice-differentiable; if for all x,y € dom (f), y # 0

(y, VE(x)) =0 = (y, V*f(x)y) >0,

then f is quasi-convex
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Quasi-Convexity
Geometrical Interpretation

The condition
(y, VE(x)) =0 = (y, V’f(x)y) >0

means

o forn=1:
ffix)=0 = f"(x)>0

(i.e., at every point with zero slope, the second derivative is
non-negative);

o for generic n:
- whenever Vf (x) =0, then V?f (x) = 0;
- when V£ (x) # 0, then V2f (x) is positive semi-definite on the
(n — 1)-dimensional subspace Vf (x)*
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Quasi-Convexity

Proposition (Representation by family of convex functions)

Suppose that f is quasi-convex; then it exists a family of convex functions
¢r: R" — R, indexed by t € R, such that

sub, (f) = subg (¢;)  VteR (3)

Indeed, we can always choose

0 if f(x)<t
+oo else

The representation is not unique, in general

o (X) = 5subt(f) (X) = {

A necessary condition for ¢; to satisfy (3) is to be non-increasing in t for
every x € R”, i.e. ¢s(x) < ¢t (x) whenever s > t
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Exercises

Exercises (d)

o (Example 3.21) Compute the conjugate of the following functions:

A. Affine function: f (x) = (a, x) + b, for x € R",

B. Negative Logarithm: f (x) = —log (x), with dom (f) = R ;
C. Exponential: f(x) = €*, for x € R;

D. Negative Entropy: f (x) = xlog (x), with dom (f) =Ry

o (Exercise 3.36, 3.41) Compute the conjugate of
A. the Negative Normalized Entropy :

0= xlg () dom(n=rL;

B. the Max-Function:

C. the Sum of Largest Elements:
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Exercises

Exercises (e)

o (Exercise 3.38) Prove Young's inequality:
xy < F(x)+G(y),

where f is an incresing function with  (0) =0, g

. g = fLlisits inverse
and F, G are defined by
F(x) / f(s) ds; and
0
y
)= [ () o

Hint: notice that F and G are conjugates
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Exercises

Exercises (f)

o (Exercise 3.39) Show the following properties of the Fenchel
conjugate:

A. Conjugate and Minimization, 1: defining
g(x)= ir;ff(x, z),
where f (x, z) is a convex function in (x, z), express g* in terms of f*;
B. Conjugate and Minimization, 2: for h convex, express the conjugate of
g(x) = ir;f{h(z) Az + b= x}
in terms of h*, A and b;

C. Conjugate of Conjugate: given a function f convex and lower
semi-continuous, show that f** = f

C. Molinari (UTFSM) Convex Functions 05 December 2016 24 / 25



Exercises
Exercises (g)

o (Exercise 3.43) Show the First-Order Condition for quasi-convexity:
suppose f is differentiable; then f is quasi-convex if and only if
dom (f) is convex and for all x,y € dom (f)

fy)<f(x) = (VF(x),y—x)<0

o (Exercise 3.46) Show that

- afunction f : R — R is quasi-linear (i.e., quasi-convex and
quasi-concave) if and only if it is monotone (non-decreasing or
non-increasing);

- afunction f: R” — R is quasi-linear if and only if it can be expressed

as
f(x) =g((a x)),
where a € R" and g : R — R is monotone
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