

S. Boyd and L. Vandenberghe - Convex Optimization Chapter 3: Convex Functions

C. Molinari

PhD student at UTFSM Internship at INRIA

05 December 2016

C. Molinari (UTFSM)

Indice

2 Fenchel Conjugate

3 Quasi-Convexity

Definition (Epigraph)

$$epi(f) = \{(x, \alpha) \in \mathbb{R}^n \times \mathbb{R} : f(x) \le \alpha\}$$

Definition (Sublevel sets)

For $\gamma \in \mathbb{R}$,

$$\operatorname{sub}_{\gamma}(f) = \{x \in \mathbb{R}^n : f(x) \le \gamma\}$$

Remark

• dom
$$(f) = \bigcup_{\gamma \in \mathbb{R}} \operatorname{sub}_{\gamma}(f);$$

• argmin
$$(f) = \bigcap_{\gamma > \inf f} \operatorname{sub}_{\gamma}(f)$$

Definition (Quasi-convexity)

A function f is quasi-convex if $sub_{\gamma}(f)$ is a convex set for every $\gamma \in \mathbb{R}$

Proposition

- f is convex function if and only if epi(f) is a convex set;
- *if f* is a convex function, *then f* is a quasi-convex

Counterexamples: $\operatorname{sub}_{\gamma}(f)$ is convex $\forall \gamma \in \mathbb{R}$ but f is not convex for

- *f*₁(*x*) = −*e^x* (concave);
- $f_2(x) = \sqrt{|x|}$ (nor convex, nor concave);
- $f_3(x) = x^3$ (nor convex, nor concave)

Definition (Lower-semicontinuity)

A function *f* is *lower-semicontinuous* if for every $x_0 \in \text{dom}(f)$

 $f(x_0) \leq \liminf_{x \to x_0} f(x)$

Proposition

The following are equivalent

- *f* is lower-semicontinuous;
- epi (f) is a closed set in $\mathbb{R}^n \times \mathbb{R}$;
- $\mathbf{sub}_{\gamma}(f)$ is a closed set in \mathbb{R}^{n} for every $\gamma \in \mathbb{R}$

Definition (Hyperplane)

An hyperplane in \mathbb{R}^n is a subset \mathcal{H} of the form

$$\mathcal{H} = \left\{ x \in \mathbb{R}^n : \langle a, x \rangle = b \right\},\$$

where $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$

Theorem (Representation for Subsets)

 $C \subseteq R^n$ is *convex* and *closed* if and only if

$$C = \bigcap \{ \mathcal{H} : \mathcal{H} \text{ is an hyperplane and } C \subseteq \mathcal{H} \}$$

(which implication is easy?)

Definition (Affine function)

An *affine function* on \mathbb{R}^n is a function g of the form

$$g(x) = \langle a, x \rangle + b,$$

where $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$

Theorem (Representation for Functions)

f is convex and lower-semicontinuous if and only if

$$f(x) = \sup \{g(x) : g \text{ is an affine function and } g(z) \le f(z) \ \forall z \in \mathbb{R}^n \}$$
(1)

(which implication is easy?)

Example: If f is convex with **dom** $(f) = \mathbb{R}^n$, than (1) holds. (why?)

Indice

Representation Theorem

2 Fenchel Conjugate

3 Quasi-Convexity

Definition (Fenchel conjugate)

For $f : \mathbb{R}^n \to \overline{\mathbb{R}}$, the Fenchel conjugate of f is the function $f^* : \mathbb{R}^n \to \overline{\mathbb{R}}$ defined as

$$f^{\star}(x) = \sup_{x \in \mathbb{R}^n} \left\{ \langle y, x \rangle - f(x) \right\}$$

Example: Support function

Given a subset $C \subset \mathbb{R}^n$, we call *support function* of C the Fenchel conjugate of indicator function of C, i.e.

$$\delta^{\star}_{\mathcal{C}}(y) = \sup_{x \in \mathcal{C}} \langle y, x \rangle$$

Geometrical interpretation

Figura: The conjugate function $f^{*}(y)$ is the maximum gap between the linear function $\langle y, x \rangle$ and f(x)

Proposition

 f^* is a convex and lower semi-continuous (wheter or not f is convex)

<u>Proof:</u> f^* is the pointwise supremum of affine functions

Proposition (Conjugate of the conjugate)

f is convex and lower-semicontinuos if and only if

$$f^{\star\star} = f$$

(which side is easy?)

In general: $f^{\star\star} \leq f$ (why?)

Proposition (Fenchel-Young inequality)

For every $x, y \in \mathbb{R}^n$,

$$f(x) + f^{\star}(y) \ge \langle x, y \rangle$$

Proof: directly from the definition

Proposition (Legendre transform)

If f is convex and differentiable, then *equality* in (2) holds if and only if

$$y=\nabla f(x)$$

Remark:

In particular, under the hypothesis of the previous Proposition, if for a given y we can solve the equation $y = \nabla f(\bar{x})$, then we can compute $f^*(y)$ as

$$f^{\star}(y) = \langle \bar{x}, \nabla f(\bar{x}) \rangle - f(\bar{x})$$

Examples

Norm

Consider f(x) = ||x||; then $f^* = \delta_{B_1^*(0)}$, i.e.

$$f^{\star}\left(y
ight)=egin{cases} 0 & ext{if} \; \|y\|_{*}\leq 1\ +\infty & ext{otherwise} \end{cases}$$

(where $\|\cdot\|_*$ is the dual norm to $\|\cdot\|)$

Norm squared

Consider $f(x) = \frac{1}{2} ||x||^2$; then

$$f^{\star}(y) = \frac{1}{2} \|y\|_{*}^{2}$$

Indice

- 1 Representation Theorem
- 2 Fenchel Conjugate
- 3 Quasi-Convexity

Definition

Definition (Quasi-convexity)

A function f is *quasi-convex* if $sub_{\gamma}(f)$ is a convex set for every $\gamma \in \mathbb{R}$

Definition (Equivalent Def. by Generalized Jensen's Inequality)

A function f is quasi-convex if **dom** (f) is convex and for every $x, y \in$ **dom** (f) and for every $\theta \in [0, 1]$

$$f(\theta x + (1 - \theta)) \le \max{f(x), f(y)}$$

(Check the equivalence)

Example: the *cardinality* function (also called ℓ^0 - "norm"), defined by

card
$$(x) = |\{i \in \{1, \ldots, n\} : x_i \neq 0\}|,$$

is quasi-concave on \mathbb{R}^n_+

Results

Proposition (Quasi-Convexity in \mathbb{R})

A continuous function on $\ensuremath{\mathbb{R}}$ is quasi-convex if and only if it is

- non-decreasing; or
- non-increasing; or

• non-increasing in $t \le c$ and non-decreasing in $t \ge c$ for some $c \in \mathbf{dom}(f)$

First/Second-Order Conditions

Proposition (First-Order Condition)

Suppose f is differentiable; then f is quasi-convex if and only if dom(f) is convex and for all $x, y \in dom(f)$

$$f(y) \leq f(x) \Rightarrow \langle \nabla f(x), y - x \rangle \leq 0$$

Geometrical Interpretation: if $\nabla f(x) \neq 0$, it defines a supporting hyperplane to $\operatorname{sub}_{f(x)}(f)$ at the point x

Remark:

If f is only quasi-convex, $\nabla f(x) = 0$ does not imply that x is a global minimizer (example?)

First/Second-Order Conditions

Proposition (Second-Order Condition)

Suppose f is twice-differentiable; if f is quasi-convex, then for all $x, y \in \text{dom}(f)$

$$\langle y, \nabla f(x) \rangle = 0 \quad \Rightarrow \quad \langle y, \nabla^2 f(x) y \rangle \ge 0$$

Proposition (Partial Converse)

Suppose f is twice-differentiable; if for all $x, y \in \mathbf{dom}(f), y \neq 0$

$$\langle y, \nabla f(x) \rangle = 0 \quad \Rightarrow \quad \langle y, \nabla^2 f(x) y \rangle > 0,$$

then f is quasi-convex

Geometrical Interpretation

The condition

$$\langle y, \nabla f(x) \rangle = 0 \quad \Rightarrow \quad \langle y, \nabla^2 f(x) y \rangle \ge 0$$

means

•
$$\underline{\text{for } n = 1}$$
:
 $f'(x) = 0 \quad \Rightarrow \quad f''(x) \ge 0$

(i.e., at every point with zero slope, the second derivative is non-negative);

• for generic *n*:

- whenever $\nabla f(x) = 0$, then $\nabla^2 f(x) \succcurlyeq 0$;
- when $\nabla f(x) \neq 0$, then $\nabla^2 f(x)$ is positive semi-definite on the (n-1)-dimensional subspace $\nabla f(x)^{\perp}$

Proposition (Representation by family of convex functions)

Suppose that f is *quasi-convex*; then it exists a family of *convex* functions $\phi_t : \mathbb{R}^n \to \overline{\mathbb{R}}$, indexed by $t \in \mathbb{R}$, such that

$$\operatorname{sub}_{t}(f) = \operatorname{sub}_{0}(\phi_{t}) \qquad \forall t \in \mathbb{R}$$
 (3)

Indeed, we can always choose

$$\phi_t(x) = \delta_{\mathsf{sub}_t(f)}(x) = \begin{cases} 0 & \text{if } f(x) \le t \\ +\infty & \text{else} \end{cases}$$

Remark 1:

The representation is not unique, in general

Remark 2:

A necessary condition for ϕ_t to satisfy (3) is to be non-increasing in t for every $x \in \mathbb{R}^n$, i.e. $\phi_s(x) \le \phi_t(x)$ whenever $s \ge t$

Indice

Representation Theorem

2 Fenchel Conjugate

3 Quasi-Convexity

Exercises

Exercises (d)

• (Example 3.21) Compute the conjugate of the following functions:

- A. Affine function: $f(x) = \langle a, x \rangle + b$, for $x \in \mathbb{R}^n$;
- B. Negative Logarithm: $f(x) = -\log(x)$, with dom $(f) = \mathbb{R}_{++}$;
- C. Exponential: $f(x) = e^x$, for $x \in \mathbb{R}$;
- D. Negative Entropy: $f(x) = x \log(x)$, with **dom** $(f) = \mathbb{R}_+$

• (Exercise 3.36, 3.41) Compute the conjugate of

A. the Negative Normalized Entropy :

$$F(x) = \sum_{i=1}^{n} x_i \log\left(\frac{x_i}{\langle \mathbf{1}, x \rangle}\right), \quad \mathbf{dom}(f) = \mathbb{R}^n_{++};$$

B. the Max-Function:

$$f(x) = \max_{i \in \{1,\ldots,n\}} x_i;$$

C. the Sum of Largest Elements:

$$f(x) = \sum_{i=1}^{r} x_{[i]}$$

Exercises

Exercises (e)

• (Exercise 3.38) Prove Young's inequality:

$$xy \leq F(x) + G(y)$$
,

where f is an increasing function with f(0) = 0, $g = f^{-1}$ is its inverse and F, G are defined by

$$F(x) = \int_0^x f(s) \, ds;$$
 and $G(y) = \int_0^y g(s) \, ds$

<u>Hint</u>: notice that F and G are conjugates

Exercises (f)

- (Exercise 3.39) Show the following properties of the *Fenchel conjugate*:
 - A. Conjugate and Minimization, 1: defining

$$g(x) = \inf_{z} f(x, z),$$

where f(x, z) is a convex function in (x, z), express g^* in terms of f^* ;

B. Conjugate and Minimization, 2: for h convex, express the conjugate of

$$g(x) = \inf_{z} \{h(z) : Az + b = x\}$$

in terms of h^* , A and b;

C. Conjugate of Conjugate: given a function f convex and lower semi-continuous, show that $f^{\star\star} = f$

Exercises

Exercises (g)

(Exercise 3.43) Show the First-Order Condition for quasi-convexity: suppose f is differentiable; then f is quasi-convex if and only if dom (f) is convex and for all x, y ∈ dom (f)

$$f(y) \leq f(x) \quad \Rightarrow \quad \langle \nabla f(x), y - x \rangle \leq 0$$

• (Exercise 3.46) Show that

- a function f : ℝ → ℝ is quasi-linear (i.e., quasi-convex and quasi-concave) if and only if it is monotone (non-decreasing or non-increasing);
- a function $f : \mathbb{R}^n \to \mathbb{R}$ is *quasi-linear* if and only if it can be expressed as

$$f(x) = g(\langle a, x \rangle),$$

where $a \in \mathbb{R}^n$ and $g : \mathbb{R} \to \mathbb{R}$ is monotone