| Read | ing |
|------|-----|
| grou | ıp  |

Alexandre Vieira

Reminder

Continuoustime systems Definition Linearization

Sampling

Reacheability

Exercices

# Reading group: Mathematical Control Theory by Eduardo D. Sontag

Alexandre Vieira

11th January 2017

## Reminder

#### Reading group

Alexandre Vieira

#### Reminder

Continuoustime systems Definition Linearization Sampling

Reacheability

Exercices

A system or machine consists of: a time set  $\mathcal{T}$ ,  $\mathcal{X}$  called the state-space,  $\mathcal{U}$  called a control-value space,  $\phi : \mathcal{D}_{\phi} \to \mathcal{X}$  called the transition map, which is defined on a subset  $\mathcal{D}_{\phi}$  of

$$\left\{(\tau,\sigma,x,\omega)|\sigma,\tau\in\mathcal{T},\ \sigma\leq\tau,\ x\in\mathcal{X},\omega\in\mathcal{U}^{[\sigma,\tau[}\right\}\right\}$$

and it complies with various properties (nontriviality, restriction, semigroup, identity).

# Right-hand side

#### Reading group

#### Alexandre Vieira

Reminder

Continuoustime systems

Definition

Sampling

Reacheability

Exercices

For continuous time system, we will describe the state's evolution through an ODE :

$$\dot{x}(t) = f(t, x(t), u(t))$$

# Right-hand side

Definition

#### Reading group

Alexandre Vieira

Reminder

Continuoustime systems

Definition Linearization

Sampling

Reacheability

Exercices

Let  $\mathcal{X}$  be an open subset of  $\mathbb{R}^n$ , and let  $\mathcal{U}$  be a metric space. A **right-hand side (rhs)** with respect to  $\mathcal{X}$  and  $\mathcal{U}$  is a function  $f : \mathbb{R} \times \mathcal{X} \times \mathcal{U} \to \mathbb{R}^n$  which can be obtained in the following way: There must exist another metric space  $\mathcal{S}$  as well as maps  $\tilde{f} : \mathcal{S} \times \mathcal{U} \to \mathbb{R}^n$  and  $\pi : \mathbb{R} \to \mathcal{S}$  so that

$$f(t,x,u) = \tilde{f}(\pi(t),x,u)$$

and the following properties hold:

- 1)  $\tilde{f}(s, \cdot, u)$  is of class  $\mathscr{C}^1$  for each fixed s, u
- 2 both  $\tilde{f}$  and  $\tilde{f}_{x}$  are continuous on  $S \times X \times U$
- 3  $\pi$  is a measurable locally essentially bounded function.

# Right-hand side

#### Reading group

Alexandre Vieira

Reminder

Continuoustime systems

Definition Linearization

Sampling

Reacheability

Exercices

### Lemma

Let f be a rhs. For any number  $\sigma < \tau$ , any measurable essentially bounded  $\omega \in \mathcal{U}^{[\sigma,\tau[}$ , and any  $x^0 \in \mathcal{X}$ , there is some nonempty subinterval  $J \subseteq \mathcal{I} = [\sigma,\tau]$ , open relative to  $\mathcal{I}$  and containing  $\sigma$ , and there exists a unique solution of

$$\dot{\xi}(t) = f(t,\xi(t),\omega(t))$$
 (1)  
 $\xi(\sigma) = x^0$ 

on J. If  $J = \mathcal{I}$ , then  $\omega$  is said to be admissible for  $x^0$ .

## Continuous time system

Definition

by

#### Reading group

Alexandre Vieira

Reminder

Continuoustime systems

Definition Linearization

Sampling

Reacheability

Exercices

Let f be a rhs. We define a **continuous-time system** as the system  $\Sigma_f = (\mathbb{R}, \mathcal{X}, \mathcal{U}, \phi)$ , where  $\phi$  is defined on

 $\mathcal{D} = \{(\tau, \sigma, x, \omega \mid \sigma < \tau, \ x \in \mathcal{X}, \ \omega \in \mathcal{U}^{[\sigma, \tau[} \text{ is admissible for } x^0\}\}$ 

 $\phi(\tau,\sigma,x,\omega) = \xi(\tau)$ 

where  $\xi(t)$  is the unique solution of (1) on  $[\sigma, \tau]$ . A continuous-time system with outputs is a system  $\Sigma_f$  with outputs whose underlying system is a continuous-time system,  $\mathcal{Y}$ is a metric space, and for which  $h: \mathcal{T} \times \mathcal{X} \to \mathcal{Y}$  is continuous.

## Continuous time system

#### Reading group

#### Alexandre Vieira

Reminder

Continuoustime systems

Definition Linearization

Sampling

Reacheability

Exercices

From now on, we simply write  $\Sigma$  for  $\Sigma_f$ .

### Definition

A continuous-time system of class  $\mathscr{C}^k$  is one for which  $\mathcal{U}$  is an open subset of  $\mathbb{R}^m$  for some nonnegative integer m, and for which  $\mathcal{S}$  and  $\tilde{f}$  can be chosen so that  $\mathcal{S}$  is an open subset of an Euclidian space and  $\tilde{f}$  is of class  $\mathscr{C}^k$ .

If  $\Sigma$  is a system with outputs, it is required in addition that  $\mathcal{Y}$  be an open subset of some Euclidian space  $\mathbb{R}^p$  and that  $h(t, \cdot)$  be of class  $\mathscr{C}^k$  for each t.

## Linear continuous-time system

#### Reading group

#### Alexandre Vieira

Reminder

Continuoustime systems

Definition Linearization

Sampling

Reacheability

Exercices

### Definition

A continuous-time system is linear (and finite dimensional on  $\mathbb R)$  if it is of class  $\mathscr C^1$  and :

$${\mathfrak D} \,\, {\mathcal U} = {\mathbb R}^m$$
 and  ${\mathcal X} = {\mathbb R}^n$ 

2  $f(t, \cdot, \cdot)$  is linear for each  $t \in \mathbb{R}$ 

If  $\Sigma$  is a system with outputs, it is required in addition that  $\mathcal{Y} = \mathbb{R}^p$  and that  $h(t, \cdot)$  be linear for each t. We call **dimension of**  $\Sigma$  the dimension of  $\mathcal{X}$ .

## Linear continuous-time system

#### Reading group

Alexandre Vieira

Reminder

Continuoustime systems

Definition

Sampling

Reacheability

Exercices

### Property

Every linear continuous-time system is complete (with respect to the class of all measurable essentially bounded controls).

 $\underline{\text{Recall:}}\ \Sigma$  is said complete if every input is admissible for every state:

$$\mathcal{D}_{\phi} = \left\{ (\tau, \sigma, x, \omega) | \sigma, \tau \in \mathcal{T}, \ \sigma \leq \tau, \ x \in \mathcal{X}, \omega \in \underbrace{\mathcal{U}^{[\sigma, \tau[}_{L^{\infty}_{\mathcal{U}}}}_{L^{\infty}_{\mathcal{U}}} \right\}$$

#### Reading group

Alexandre Vieira

Reminder

Continuoustime systems Definition Linearization

Sampling

Reacheability

Exercices

### Definition

Let  $\Sigma$  be a  $\mathcal{C}^1$  continuous-time system over  $\mathbb{R}$ , and assume that  $\Gamma = (\overline{\xi}, \overline{\omega})$  is a trajectory on an interval  $\mathcal{I}$ . The linearization of  $\Sigma$  along  $\Gamma$  is the continuous-time linear system  $\Sigma_*[\Gamma]$  with local-in-time description  $f_*$  where :

$$\forall (x,u) \in \mathbb{R}^n \times \mathbb{R}^m, \ f_*(t,x,u) = A(t)x + B(t)u$$

where  $A(t) = f_x(t, \overline{\xi}(t), \overline{\omega}(t))$  and  $B(t) = f_u(t, \overline{\xi}(t), \overline{\omega}(t))$  for all  $t \in \mathcal{I}$  and A(t) = B(t) = 0 for all  $t \notin \mathcal{I}$ .

If  $\Sigma$  is a system with outputs, then the continuous-time linear system  $\Sigma_*[\Gamma]$  admits as readout map:

$$h_*(t,x)=C(t)x$$

where  $C(t) = h_x(t, \overline{\xi}(t))$  if  $t \in \mathcal{I}$ , C(t) = 0 otherwise.

#### Reading group

#### Alexandre Vieira

Reminder

Continuoustime systems Definition Linearization Sampling

Reacheability

Exercices

Linearization always presented (for discrete and continuous-time case). But is it really useful ?

Suppose (0,0) is an equilibrium point of the smooth invariant system  $\dot{x} = f(x, u)$ . Then, for  $(x, u) \in V(0, 0)$ :

$$f(x, u) = f_x(0, 0)x + f_u(0, 0)u + h.o.t$$

#### Reading group

Alexandre Vieira

Reminder

Continuoustime systems Definition Linearization Sampling

Reacheability

Exercices

### Theorem

Let  $\Sigma$  be a (time-independant, continuous-time)  $\mathscr{C}^1$  system, and pick any interval  $[\sigma, \tau]$ . Consider the map that gives the final state given an initial state and control

$$lpha:\mathcal{D}_{\sigma, au} o\mathcal{X}\ :\ (x,\omega)\mapsto\xi( au)$$

as well as the mapping describing the entire path

$$\psi: \mathcal{D}_{\sigma, \tau} o \mathscr{C}^{\mathsf{0}}_{\mathsf{n}} : (\mathsf{x}, \omega) \mapsto \xi$$

where  $\xi(t) = \phi(t, \sigma, x, \omega_{|[\sigma, t[]})$ .

#### Reading group

Alexandre Vieira

Reminder

Continuoustime systems Definition Linearization Sampling

Reacheability

Exercices

# Theorem

Consider also  $(\xi, \omega)$  any trajectory of this system,  $\mu \in L_m^{\infty}$ , and  $\lambda : [\sigma, \tau] \to \mathbb{R}^n$  the solution of the following ODE

$$\dot{\lambda}(t) = A(t)\lambda(t) + B(t)\mu(t)$$

with initial condition  $\lambda(\sigma) = \lambda_0 \in \mathbb{R}^n$ , where

$$A(t) = f_x(\xi(t), \omega(t)), \ B(t) = f_u(\xi(t), \omega(t))$$

The following conclusions then hold :

• The set  $\mathcal{D}_{\sigma,\tau}$  is an open subset of  $\mathcal{X} \times L^{\infty}_{\mathcal{U}}$ , and both  $\psi$  and  $\alpha$  are continuous.

Reading group

Alexandre Vieira

Reminder

Continuoustime systems Definition Linearization Sampling

Reacheability

Exercices

### Theorem

•  $\alpha$  is of class  $\mathcal{C}^1$ , and

$$\left. \frac{\partial \alpha}{\partial x} \right|_{x,\omega} \lambda_0 + \left. \frac{\partial \alpha}{\partial \omega} \right|_{x,\omega} \mu = \lambda(\tau)$$

That is,  $\alpha_*[x, \omega]$  is the same as the final state map corresponding to the linearization  $\Sigma_*[\xi, \omega]$ . In particular, for systems of class  $\mathscr{C}^1$ ,  $\alpha(x, \cdot)$  has full rank at  $\omega$  if and only if the linear map

$$\mu\mapsto \int_{\sigma}^{ au} \Phi( au,s)B(s)\mu(s)ds$$

is onto, where  $\Phi(\tau, \sigma)$  is the solution to the matrix ode  $\dot{X}(t) = f_x(\xi(t), \omega(t))X(t)$ ,  $X(\sigma) = I$ .

#### Reading group

#### Alexandre Vieira

Reminder

Continuoustime systems Definition Linearization

Sampling

Reacheability

Exercices

### Theorem

- Take any x and any ω admissible for x, and denote ξ = ψ(x, ω). Let {ω<sub>j</sub>}<sub>j=1</sub><sup>∞</sup> be an equibounded sequence of controls, and lim x<sub>j</sub> = x. If either one of the following conditions hold :

  - **2**  $\omega_j \rightharpoonup \omega$  and  $\Sigma$  is affine in controls

then  $\xi_j = \psi(x_j, \omega_j)$  is defined for all large j and

 $\lim \|\xi_j - \xi\|_{\infty} = 0$ 

# Sampling

#### Reading group

Alexandre Vieira

Reminder

Continuoustime systems Definition Linearization

#### Sampling

Reacheability

Exercices

### Definition

Let  $\Sigma = (\mathbb{R}, \mathcal{X}, \mathcal{U}, \phi)$  be a continuous-time system, and pick any real number  $\delta > 0$ . The  $\delta$ -sampled system associated to  $\Sigma$  is the discrete-time system  $\Sigma_{[\delta]}$  defined as follows. Let  $\mathcal{E}_{\delta}$  be the subset of  $\mathbb{Z} \times \mathcal{X} \times \mathcal{U}$  consisting of those triples (k, x, u) that satisfy that  $\omega$  is admissible for x, where  $\omega \in \mathcal{U}^{[k\delta, (k+1)\delta[}$  is defined by

$$\omega(t) \equiv u$$
 for all  $t \in [k\delta, (k+1)\delta[$ 

The state space of  $\Sigma_{[\delta]}$  is then the set of all  $x \in \mathcal{X}$  for which there is some  $k, \omega$  with  $(k, x, \omega) \in \mathcal{E}_{\delta}$  and the local-in-time dynamics are given on  $\mathcal{E}_{\delta}$  by

$$\mathsf{P}(k, x, u) = \phi((k+1)\delta, k\delta, x, \omega)$$

# Basic reachability notions

Definition

#### Reading group

Alexandre Vieira

Reminder

Continuoustime systems Definition Linearization

Sampling

#### Reacheability

Exercices

An event is a pair  $(x, t) \in \mathcal{X} \times \mathcal{T}$ .

- (z, τ) can be reached from (x, σ) iff there is a path of Σ on [σ, τ] whose initial state is x and final state is z. One also says that (x, σ) can be controlled to (z, τ).
- If  $x, z \in \mathcal{X}$ ,  $T \ge 0 \in \mathcal{T}$ , and there exist  $\sigma, \tau \in \mathcal{T}$  with  $\tau \sigma = T$  such that  $(z, \tau)$  can be reached from  $(x, \sigma)$ , then z can be reached from x in time T. Equivalently, x can be controlled to z in time T.
- z can be reached from x (or x can be controlled to z) if this happens for at least one T.

# Basic reachability notions



# Basic reachability notions

#### Reading group

#### Alexandre Vieira

Reminder

Continuoustime systems Definition Linearization

Sampling

Reacheability

Exercices

### Definition

The system  $\Sigma$  is (completely) controllable on the interval  $[\sigma, \tau]$  if for each  $x, z \in \mathcal{X}$  it holds that  $(x, \sigma) \rightsquigarrow (z, \tau)$ . It i (completely) controllable in time T if for each  $x, z \in \mathcal{X}$ , it holds that  $x \rightsquigarrow z$ . It is juste (completely) controllable is  $x \rightsquigarrow z$  for all x, z.

# Properties of reachability

Reading group

Alexandre Vieira

Reminder

Continuoustime systems Definition Linearization

Sampling

Reacheability

Exercices

- Properties
- Let  $\Sigma$  be a linear system and pick any  $\sigma, \tau, T \in \mathcal{T}$ .
  - $\Sigma$  is controllable on  $[\sigma, \tau]$  iff  $(0, \sigma) \rightsquigarrow (y, \tau)$  for all  $y \in \mathcal{X}$
  - If  $\Sigma$  is time-invariant, then  $\Sigma$  is controllable in time T iff  $0 \underset{\tau}{\rightsquigarrow} y$  for all  $y \in \mathcal{X}$
  - If Σ is continuous-time, then it is controllable on [σ, τ] iff
    (x, σ) → (0, τ) for all x ∈ X
  - If Σ is time-invariant and continuous-time, then Σ is controllable in time T iff x → 0 for all x ∈ X
  - The conclusions of the two previous points still hold for discrete-time systems if A(k) is invertible for all k ∈ [σ, τ].

# List of exercices

#### Reading group

#### Alexandre Vieira

Reminder

- Continuoustime systems Definition Linearization
- Sampling
- Reacheability

Exercices

- Form 3 groups. Each group choose one of the following (list of) exercice(s), solve it, and one member write the solution on the blackboard.
  - Exercices 2.7.3 and 2.7.5 (p. 48) : rather theortical exercices on linear systems
  - ② Exercices 2.7.15 and 2.7.16 (p.52) : application on linearization
  - 3 Exercice 2.10.2 (sampling of some examples) and Exercice 3.1.2/3.1.3