Dua	

A. Rocca

Presentation Part1

Perturbation & Sensibility Analysis

Dual of equivalent Primal

Examples of Alternatives Theorems

Exercise 5.23

Duality (Part 1)

Alexandre Rocca

March 3, 2017

Contents I

Duality

- A. Rocca
- Presentation Part1
- Perturbation & Sensibility Analysis
- Dual of equivalent Primal
- Examples of Alternatives Theorems
- Exercise 5.23

- 1 Presentation Part1
- 2 Perturbation & Sensibility Analysis
- 3 Dual of equivalent Primal
- 4 Examples of Alternatives Theorems

5 Exercise 5.23

Lagrangian dual function

Duality

A. Rocca

Presentation Part1

Perturbation & Sensibility Analysis

Dual of equivalent Primal

Examples of Alternatives Theorems

Exercise 5.23

Standard Form Optimization Problem:

$$p^* := \min f_0(x)$$

s.t. $f_i(x) \le 0, i = 1, ..., m$
 $h_i(x) = 0, i = 1, ..., p$

 $\forall x \in \mathcal{D} \subseteq \mathbb{R}^n$

optimal value p*

Lagrangian dual function

Duality

A. Rocca

Presentation Part1

Perturbation & Sensibility Analysis

Dual of equivalent Primal

Examples of Alternatives Theorems

Exercise 5.23

Standard Form Optimization Problem:

minimize
$$f_0(x)$$

s.t. $f_i(x) \le 0, i = 1, ..., m$
 $h_i(x) = 0, i = 1, ..., p$

Lagrangian:

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{j=1}^p \nu_j h_j(x)$$
$$= \langle f, (1,\lambda,\nu) \rangle$$

Lagrangian dual function

Duality

A. Rocca

Presentation Part1

Perturbation & Sensibility Analysis

Dual of equivalent Primal

Examples of Alternatives Theorems

Exercise 5.23

Standard Form Optimization Problem:

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \ i=1,\ldots,m \\ & h_i(x)=0, \ i=1,\ldots,p \end{array}$$

Lagrange Dual Function:

$$g(\lambda,\nu) = \inf_{x \in \mathcal{D}} (L(x,\lambda,\nu))$$
$$= \inf_{x \in \mathcal{D}} (f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{j=1}^p \nu_j h_j(x))$$

Properties

Duality

A. Rocca Presentation

Part1

• $g(\lambda, \nu)$ is concave.

• if
$$\lambda \geq$$
 0, $g(\lambda,
u) \leq p^*, \, orall
u$

if \hat{x} is a feasible point, and $\lambda \geq 0$ then:

$$L(\hat{x}, \lambda, \nu) = f_0(\hat{x}) + \sum_{i=1}^m \lambda_i f_i(\hat{x}) + \sum_{j=1}^p \nu_j h_j(\hat{x}) \le f_0(\hat{x})$$

$$g(\lambda,\nu) = \inf_{x \in \mathcal{D}} (f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{j=1}^p \nu_j h_j(x))$$

$$\leq L(\hat{x}, \lambda, \nu) \leq f_0(\hat{x}), \quad \forall \hat{x} \text{ feasible}$$

Interpretations

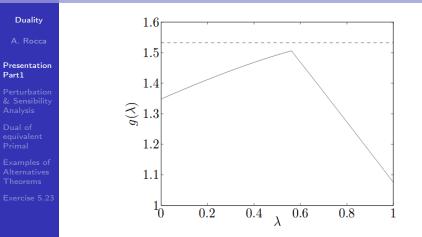


Figure 5.2 The dual function g for the problem in figure 5.1. Neither f_0 nor f_1 is convex, but the dual function is concave. The horizontal dashed line shows p^* , the optimal value of the problem.

Duality

7 / 41

Dual function & Conjugate

Duality

A. Rocca

Presentation Part1

Perturbation & Sensibility Analysis

Dual of equivalent Primal

Examples of Alternatives Theorems

Exercise 5.23

Reminder:

We call f^* the conjugate of $f : \mathbb{R}^n \to \mathbb{R}$, the function:

$$f^*(y) = \sup_{x \in \mathcal{D}} (y^T x - f(x))$$

Dual function & Conjugate

Duality

A. Rocca

Presentation Part1

Perturbation & Sensibility Analysis

Dual of equivalent Primal

Examples of Alternatives Theorems

Exercise 5.23

$$f^*(y) = \sup_{x \in \mathcal{D}} (y^T x - f(x))$$

For the Linear Constraint Optimization problem:

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{s.t.} & Ax \leq b \\ & Cx = d \end{array}$$

$$g(\lambda,\nu) = \inf_{x} (f_0(x) + \lambda^T (Ax - b) + \nu^T (Cx - d))$$

= $-b^T \lambda - d^T \nu - \sup_{x} ((-A^T \lambda - C^T \nu)^T x - f_0(x))$
= $-b^T \lambda - d^T \nu - f_0^* ((-A^T \lambda - C^T \nu))$

Least-norm solution of linear equations

Duality

A. Rocca

Presentation Part1

Perturbation & Sensibility Analysis

Dual of equivalent Primal

Examples of Alternatives Theorems

Exercise 5.23

$$\begin{array}{ll} \mbox{minimize} & x^T x \\ \mbox{subject to} & Ax = b \end{array}$$

dual function

- Lagrangian is $L(x,\nu) = x^T x + \nu^T (Ax b)$
- to minimize L over x, set gradient equal to zero:

$$\nabla_x L(x,\nu) = 2x + A^T \nu = 0 \quad \Longrightarrow \quad x = -(1/2)A^T \nu$$

• plug in in L to obtain g:

$$g(\nu) = L((-1/2)A^T\nu, \nu) = -\frac{1}{4}\nu^T A A^T\nu - b^T\nu$$

a concave function of $\boldsymbol{\nu}$

lower bound property: $p^{\star} \geq -(1/4)\nu^T A A^T \nu - b^T \nu$ for all ν

Standard form LP

Duality

A. Rocca

Presentation Part1

- Perturbation & Sensibility Analysis
- Dual of equivalent Primal
- Examples of Alternatives Theorems

Exercise 5.23

minimize
$$c^T x$$

subject to $Ax = b$, $x \succeq 0$

dual function

• Lagrangian is

$$L(x, \lambda, \nu) = c^T x + \nu^T (Ax - b) - \lambda^T x$$

= $-b^T \nu + (c + A^T \nu - \lambda)^T x$

• L is affine in x, hence

$$g(\lambda,\nu) = \inf_{x} L(x,\lambda,\nu) = \begin{cases} -b^{T}\nu & A^{T}\nu - \lambda + c = 0\\ -\infty & \text{otherwise} \end{cases}$$

g is linear on affine domain $\{(\lambda,\nu)\mid A^T\nu-\lambda+c=0\},$ hence concave

lower bound property: $p^{\star} \geq -b^T \nu$ if $A^T \nu + c \succeq 0$

A. Rocca	Duality	11 / 41

Lagrange Dual Optimization Problem

Duality

A. Rocca

Presentation Part1

Perturbation & Sensibility Analysis

Dual of equivalent Primal

Examples of Alternatives Theorems

Exercise 5.23

Dual optimization problem:

$$egin{array}{ll} d^* := \max & g(\lambda,
u) \ & ext{ s.t. } & \lambda \geq 0 \end{array}$$

• dom g =
$$(\lambda, \nu)|g(\lambda, \nu) > -\infty$$

g(λ, ν) is concave, so this problem is a convex optimization problem

Definitions

Duality

A. Rocca

Presentation Part1

Perturbation & Sensibility Analysis

Dual of equivalent Primal

Examples o Alternatives Theorems

Exercise 5.23

Weak Duality:

Strong Duality:

$$d^* = p^*$$

 $d^* \leq p^*$

Duality Gap:

$$gap = p^* - d^*$$

Slater's Constraint Qualification

Duality

A. Rocca

Presentation Part1

Perturbation & Sensibility Analysis

Dual of equivalent Primal

Examples of Alternatives Theorems

Exercise 5.23

If the primal problem is **convex** with the following form, we have conditions to ensure strong duality:

$$p^* := ext{minimize} \quad f_0(x)$$

s.t. $f_i(x) \leq 0, \quad i = 1 \dots, m$
 $Ax = b$

Slater: If there exist \hat{x} in the *relative interior of* \mathcal{D} satisfying: $f_i(\hat{x}) < 0$ and $A\hat{x} = b$, then strong duality holds. This can be reduced to the constraints f_i which are not affine.

Inequality form LP

Duality

A. Rocca

Presentation Part1

Perturbation & Sensibility Analysis

Dual of equivalent Primal

Examples of Alternatives Theorems

Exercise 5.23

primal problem

 $\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax \preceq b \end{array}$

dual function

$$g(\lambda) = \inf_{x} \left((c + A^{T}\lambda)^{T}x - b^{T}\lambda \right) = \begin{cases} -b^{T}\lambda & A^{T}\lambda + c = 0\\ -\infty & \text{otherwise} \end{cases}$$

dual problem

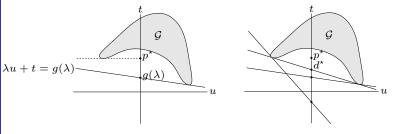
 $\begin{array}{ll} \mbox{maximize} & -b^T\lambda \\ \mbox{subject to} & A^T\lambda + c = 0, \quad \lambda \succeq 0 \end{array}$

- from Slater's condition: $p^{\star} = d^{\star}$ if $A\tilde{x} \prec b$ for some \tilde{x}
- in fact, $p^{\star} = d^{\star}$ except when primal and dual are infeasible

Geometric interpretation

for simplicity, consider problem with one constraint $f_1(x) \le 0$ interpretation of dual function:

 $g(\lambda) = \inf_{(u,t)\in\mathcal{G}} (t+\lambda u), \quad \text{where} \quad \mathcal{G} = \{(f_1(x), f_0(x)) \mid x \in \mathcal{D}\}$



- $\lambda u + t = g(\lambda)$ is (non-vertical) supporting hyperplane to $\mathcal G$
- hyperplane intersects t-axis at $t = g(\lambda)$

Α.	Rocca	
----	-------	--

Duality

Presentation Part1

epigraph variation: same interpretation if ${\mathcal{G}}$ is replaced with

A. Rocca

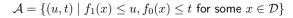
Presentation Part1

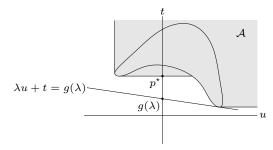
Perturbation & Sensibility Analysis

Dual of equivalent Primal

Examples of Alternatives Theorems

Exercise 5.23





strong duality

- holds if there is a non-vertical supporting hyperplane to ${\cal A}$ at $(0,p^{\star})$
- for convex problem, \mathcal{A} is convex, hence has supp. hyperplane at $(0, p^{\star})$
- Slater's condition: if there exist $(\tilde{u}, \tilde{t}) \in \mathcal{A}$ with $\tilde{u} < 0$, then supporting hyperplanes at $(0, p^*)$ must be non-vertical

A. Rocca	Duality	17 / 41

	Proof of Slater's Constraint Qualification
Duality	
Presentation Part1	
Perturbation & Sensibility Analysis	
Dual of equivalent Primal	[On Board]
Examples of Alternatives Theorems	

Sub-optimality

(

Duality

A. Rocca

Presentation Part1

Perturbation & Sensibility Analysis

Dual of equivalent Primal

Examples of Alternatives Theorems

Exercise 5.23

If x is a primal feasible point, and (λ, ν) a dual feasible point:

$$p^* \geq g(\lambda, \nu)$$

$$0 \leq f_0(x) - p^* \leq f_0(x) - g(\lambda,
u)$$

This leads to an absolute ϵ_{abs} and a relative ϵ_{rel} optimality criteria:

$$f_0(x) - g(\lambda, \nu) \le \epsilon_{abs}$$
$$\frac{f_0(x) - g(\lambda, \nu)}{-f_0(x)} \le \epsilon_{rel}, \quad f_0(x) < 0$$
$$\frac{f_0(x) - g(\lambda, \nu)}{g(\lambda, \nu)} \le \epsilon_{rel}, \quad g(\lambda, \nu) > 0$$

KKT conditions - Non Convex

Duality

A. Rocca

Presentation Part1

Perturbation & Sensibility Analysis

Dual of equivalent Primal

Examples of Alternatives Theorems

Exercise 5.23

If $f_0, f_1, \ldots, f_m, h_0, \ldots, h_p$ are differentiable. In case of strong duality, given the primal and dual optimal points, x^*, λ^*, ν^* . The Optimality KKT conditions are:

 $f_{i}(x^{*}) \leq 0, \quad i = 1, ..., m$ $h_{i}(x^{*}) = 0, \quad i = 1, ..., p$ $\lambda_{i}^{*} \geq 0, \quad i = 1, ..., m$ $\lambda_{i}^{*} f_{i}(x^{*}) = 0, \quad i = 1, ..., m$

$$\nabla f_0(x^*) + \sum_{i=1}^{m} \lambda_i^* \nabla f_i(x^*) + \sum_{i=1}^{p} \nu_i^* \nabla h_i(x^*) = 0$$

KKT conditions - Convex

Duality

A. Rocca

Presentation Part1

Perturbation & Sensibility Analysis

Dual of equivalent Primal

Examples of Alternatives Theorems

Exercise 5.23

 $f_{i}(\hat{x}) \leq 0, \quad i = 1, ..., m$ $h_{i}(\hat{x}) = 0, \quad i = 1, ..., p$ $\hat{\lambda}_{i} \geq 0, \quad i = 1, ..., m$ $\hat{\lambda}_{i}f_{i}(\hat{x}) = 0, \quad i = 1, ..., m$ $\nabla f_{0}(\hat{x}) + \sum_{i=1}^{m} \hat{\lambda}_{i} \nabla f_{i}(\hat{x}) + \sum_{i=1}^{p} \hat{\nu}_{i} \nabla h_{i}(\hat{x}) = 0$

For a **convex problem**, any point satisfying the above conditions is optimal with a *0 duality gap*. If Slater's conditions are true, then the KKT conditions are **necessary and sufficient conditions** for optimality.

A. Rocca	Duality	21 / 41
----------	---------	---------

Sumary

Duality

A. Rocca

Presentation Part1

Perturbation & Sensibility Analysis

Dual of equivalent Primal

Examples of Alternatives Theorems

Exercise 5.23

$$L(x,\lambda,\nu) = f_0(x) + \sum_i \lambda_i f_i(x) + \sum_j \nu_j h_j(x)$$

Original Problem

 $p^* = \min f_0(x)$ s.t. $f_i(x) \le 0$ $h_j(x) = 0$ Dual Problem

 $d^* = \max \inf_{x} L(x, \lambda, \nu)$ = max $g(\lambda, \nu)$ s.t. $\lambda \ge 0$

g(λ, ν) concave
d* ≤ p* :: weak duality
d* = p* :: strong duality

Sumary

Duality

A. Rocca

Presentation Part1

Perturbation & Sensibility Analysis

Dual of equivalent Primal

Examples of Alternatives Theorems

Exercise 5.23

$\begin{array}{ll} \text{Original Problem} & \text{Dual Problem} \\ p^* = \min f_0(x) \\ \text{s.t. } f_i(x) \leq 0 & d^* = \max g(\lambda, \nu) \\ h_j(x) = 0 & \text{s.t. } \lambda \geq 0 \end{array}$

Complementary Slackness:

If strong duality holds, with (x^*, λ^*, ν^*) the optimal solutions.

$$λ_i^* f_i(x^*) = 0, ∀i
 λ_i^* > 0 ⇒ f_i(x^*) = 0
 f_i(x^*) < 0 ⇒ λ_i^* = 0$$

Perturbed Problem

Duality

A. Rocca

Presentatio Part1

Perturbation & Sensibility Analysis

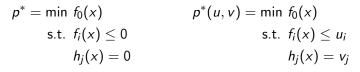
Dual of equivalent Primal

Examples of Alternatives Theorems

Exercise 5.23

Original Primal

Perturbed Primal



$$p^*(u, v) = \inf\{f_0(x) | \exists x \in D, f_i(x) \le u_i, h_j(x) = v_j\}$$

 $p^*(0, 0) = p^*$
If the original problem is convex, then $p^*(u, v)$ is a convex function of (u, v) .(Exercise 5.32)

Global Sensibility Analysis

Duality

A. Rocca

Presentation Part1

Perturbation & Sensibility Analysis

Dual of equivalent Primal

Examples o Alternatives Theorems

Exercise 5.23

- Let's assume:
 - strong duality
 - dual optimum is attained in (λ^*, ν^*) . $p^*(u, v) \ge p^*(0, 0) \lambda^{*\intercal}u \nu^{*\intercal}v$
 - $\lambda_i^* \gg 0$ & $u_i < 0 \rightsquigarrow p^*(u, v) \nearrow$
 - $(\nu_j^* \gg 0 \& v_j < 0) \text{or}(\nu_j^* \ll 0 \& v_j > 0) \rightsquigarrow p^*(u, v) \nearrow$
 - NO guaranty for $\lambda_i^* \gg 0$ and $u_i > 0$:: only a LOWER BOUND

Local Sensibility Analysis

Duality

A. Rocca

Presentatio Part1

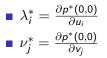
Perturbation & Sensibility Analysis

Dual of equivalent Primal

Examples of Alternatives Theorems

Exercise 5.23

If $p^*(u, v)$ is differentiable:



By complementary slackness:

- $f_i(x^*) < 0 \Rightarrow \lambda_i^* = 0 ::$ small change around $u_i = 0$
- $f_i(x^*) = 0 \Rightarrow \lambda_i^* > 0 (\gg 0) :: p^*$ greatly affected by u_i

Introducing New Variables

Duality

A. Rocca

Presentation Part1

Perturbation & Sensibility Analysis

Dual of equivalent Primal

Examples of Alternatives Theorems

Exercise 5.23

Original Problem

$$p^* = \min f_0(Ax + b)$$

$$d^* = \max \inf_x (f_0(Ax + b))$$

$$= \max p^* = p^*$$

Transformed Problem

$$p'^* = \min f_0(y)$$

s.t. $Ax + b = y$
 $d'^* = \max b^T \nu - f_0^*(\nu)$
s.t. $A^T \nu = 0$

Reminder:

$$g'(\nu) = \inf_{x,y} (f_0(y) - v^{\mathsf{T}}y + \nu^{\mathsf{T}}Ax + b^{\mathsf{T}}\nu)$$
$$= \begin{cases} -f_0^*(\nu) + b^{\mathsf{T}}\nu, & A^{\mathsf{T}}\nu = 0\\ -\infty, & \text{otherwise} \end{cases}$$

Introducing New Equality Constraints

Duality

Dual of equivalent Primal

Original Problem

$$p^* = \min f_0(A_0x + b_0)$$

s.t. $f_i(A_ix + b_i) \leq 0$

Transformed Problem

$$p'^* = \min f_0(y_0)$$

s.t. $f_i(y_i) \le 0$
 $A_i x + b_i = y_i$

$$d'^* = \max \sum_{i} \nu_i^{\mathsf{T}} b_i - f_0^*(\nu_0) - \sum_{i} \lambda_i f_i^*(\nu_i / \lambda_i)$$

s.t. $\lambda \ge 0$
 $\sum_{i} A_i^{\mathsf{T}} \nu_i = 0$

Weak Alternatives

Duality

A. Rocca

Presentation Part1

Perturbation & Sensibility Analysis

Dual of equivalent Primal

Examples of Alternatives Theorems

Exercise 5.23

Either: (P1) has a solution OR (P2) has a solution OR none (Only implication of the infeasibility). Example:

$$f_i(x) \leq 0, \ \forall i, \quad h_j(x) = 0, \ \forall j, \ \text{is feasible}$$
 (1)

 $0 < g(\lambda, \nu), \ \lambda \ge 0, \ \text{is feasible}$ (2)

If \hat{x} a feasible point for (1), and $(\hat{\lambda}, \hat{\nu})$ feasible for (2) then:

$$0 < g(\hat{\lambda}, \hat{\nu}) \leq \underbrace{\sum_{i} \hat{\lambda}_{i} f_{i}(\hat{x})}_{\leq 0} + \underbrace{\sum_{j} \hat{\nu}_{j} h_{j}(\hat{x})}_{=0} \leq 0$$

or

Strong Alternatives

Duality

A. Rocca

Presentation Part1

Perturbation & Sensibility Analysis

Dual of equivalent Primal

Examples of Alternatives Theorems

Exercise 5.23

Either: (P1) has a solution OR (P2) has a solution (equivalence between feasibility of one and infeasibility of the other). Example, with f_i convex $\forall i$:

$$f_i(x) < 0, \ \forall i, \quad \exists x \in \operatorname{relint}(\mathcal{D}), \ Ax = b, \ \text{is feasible}$$
 (3)

or

$$0 \le g(\lambda, \nu), \ \lambda \ge 0, \lambda \ne 0, \ ext{is feasible}$$
 (4)

	Farkas Lemma
Duality A. Rocca Presentation Part1 Perturbation & Sensibility Analysis Dual of equivalent	The Farkas Lemma is a strong alternative: Either $Ax = b, x \ge 0$ has a solution
Primal Examples of Alternatives Theorems Exercise 5.23	or $\mathcal{A}^{T} y \geq 0, b^{T} y < 0$ has a solution

Hilbert's Nullstellensatz

Duality

A. Rocca

Presentation Part1

Perturbation & Sensibility Analysis

Dual of equivalent Primal

Examples of Alternatives Theorems

Exercise 5.23

Some generalization of alternatives theorems: Let's have $P_i \in \mathbb{R}[\mathbb{C}^n], \quad i = 1 \dots m$. Either

$$P_1(x)=0,\ldots,P_m(x)=0$$

has a solution $x \in \mathbb{C}^n$. OR $\exists Q_1, \ldots, Q_m \in \mathbb{R}[\mathbb{C}^n]$ such that

$$P_1(x)Q_1(x) + \cdots + P_m(x)Q_m(x) = -1$$

has a solution.

5.23.1

Duality

A. Rocca

Presentation Part1

Perturbation & Sensibility Analysis

Dual of equivalent Primal

Examples of Alternatives Theorems

Exercise 5.23

By contradiction, assume

$$-c
ot\in \left\{\sum_{i\in I} z_i a_i | z_i \ge 0\right\} = K$$

K is a convex closed cone, thus by the *strict separating* hyperplane theorem, there exists $\zeta \in \mathbb{R}^m$ and $\gamma \in \mathbb{R}$ such that :

$$-c^{\mathsf{T}}\zeta < \gamma, \ \left(\sum_{i\in I} z_i a_i^{\mathsf{T}}\right)\zeta > \gamma, \ \forall z_i \geq 0$$

5.23.1

Duality

A. Rocca

Presentation Part1

Perturbation & Sensibility Analysis

Dual of equivalent Primal

Examples of Alternatives Theorems

Exercise 5.23

Lemma : Let $K \subset \mathbb{R}^q$ be a cone. Suppose there exist $p \in \mathbb{R}^q$ and $M \in \mathbb{R}$ such that

$$\forall x \in K, p^{\mathsf{T}}x \geq M$$

Then $M \ge 0$

Proof : We will prove this by contradiction. Suppose there exists $x' \in K$ such that $p^{\mathsf{T}}x' < 0$ (and thus, M < 0). Consider

$$lpha = rac{2M}{p^{\intercal}x'} > 0 ext{ and } y = lpha x'$$

 $y \in K$ since $\alpha > 0$ and $x' \in K$. But :

1

$$p^{\mathsf{T}}y = 2M\frac{p^{\mathsf{T}}x'}{p^{\mathsf{T}}x'} = 2M < M$$

since M < 0. That contradicts the fact that $p^{\mathsf{T}}x \ge M$ for all $x \in K$. \Box

A. Rocca

Duality

34 / 41

A. Rocca

Presentation Part1

Perturbation & Sensibility Analysis

Dual of equivalent Primal

Examples o Alternatives Theorems

Exercise 5.23

From the previous lemma, we see that $\gamma \geq 0$, so $\left(\sum_{i \in I} z_i a_i^{\mathsf{T}}\right) \zeta > 0, \ \forall z_i \geq 0$. Thus, by taking $z_i = 1, \ z_j = 0$ $\forall i \neq j$, we have :

$$a_i^{\mathsf{T}}\zeta > 0, \ \forall i \in I$$

Furthermore, since $-c^{\mathsf{T}}\zeta < (\sum_{i \in I} z_i a_i^{\mathsf{T}}) \zeta$, $\forall z_i \ge 0$, by taking $z_i = b_i - a_i^{\mathsf{T}} x^*$, which is nonnegative and equal to 0 for $i \in I$, we have :

$$-c^{\mathsf{T}}\zeta < \left(\sum_{i\in I} (b_i - a_i^{\mathsf{T}} x^*) a_i^{\mathsf{T}}\right) \zeta \\ = 0$$

A. Rocca

Presentation Part1

Perturbation & Sensibility Analysis

Dual of equivalent Primal

Examples of Alternatives Theorems

Exercise 5.23

To sum this up, we have :

$$-c^{\mathsf{T}}\zeta < 0, \ a_i^{\mathsf{T}}\zeta > 0, \ \forall i \in I$$

For an $\varepsilon > 0$ small enough, let us consider $d = x^* - \varepsilon \zeta$. This d is primal-feasible :

For i ∉ I, a_i^Td = a_i^Tx^{*} -εa_i^Tζ < b_i for ε small enough (the strict inequality forms an open neighbourhood of x^{*}).
 For i ∈ I, a_i^Td = a_i^Tx^{*} - εa_i^Tζ = b_i - εa_i^Tζ ≤ b_i.

A. Rocca

Presentation Part1

Perturbation & Sensibility Analysis

Dual of equivalent Primal

Examples of Alternatives Theorems

Exercise 5.23

On top of that :

$$c^{\mathsf{T}}d = c^{\mathsf{T}}x^* - \varepsilon c^{\mathsf{T}}\zeta = p^*\underbrace{-\varepsilon c^{\mathsf{T}}\zeta}_{<0} < p^*$$

This contradicts the fact that p^* is the optimal value. So there exists $z \ge 0$ such that $z_i = 0 \quad \forall i \notin I$ and $A^{\mathsf{T}}z + c = 0$. This z is dual feasible, thus $-b^{\mathsf{T}}z \le p^*$ (weak duality theorem). But :

$$-b^{\mathsf{T}}z = -\sum_{i\in I} b_i z_i = -x^{*\mathsf{T}}\underbrace{\left(\sum_{i\in I} z_i a_i\right)}_{=-c} = c^{\mathsf{T}}x^* = p^*$$

So z is dual optimal.

A. Rocca

Presentation Part1

Perturbation & Sensibility Analysis

Dual of equivalent Primal

Examples of Alternatives Theorems

Exercise 5.23

We denote (\mathcal{P}) the primal problem (that we suppose infeasible), (\mathcal{D}) the dual one. Consider (\mathcal{P}') and its dual (\mathcal{D}') :

$$d' = \max - b^{\mathsf{T}}z$$

 $p' = \min 0$ s.t. $A^{\mathsf{T}}z = 0$ (\mathcal{D}')
s.t. $Ax < b$ (\mathcal{P}') $z \ge 0$

A. Rocca

Presentation Part1

Perturbation & Sensibility Analysis

Dual of equivalent Primal

Examples of Alternatives Theorems

Exercise 5.23

Since (\mathcal{P}) is infeasible, so is (\mathcal{P}') , so $p'^* = \infty$. (\mathcal{D}') is feasible (since z = 0 is feasible), so $d' \ge 0$. Suppose d' = 0. Since : • (\mathcal{D}') is feasible

- *d′* is finite
- (\mathcal{P}') is the dual of (\mathcal{D}')

we have, through question 1, d' = p'. So (\mathcal{P}') should be feasible, which is a contradiction. So d' > 0.

A. Rocca

Presentation Part1

Perturbation & Sensibility Analysis

Dual of equivalent Primal

Examples of Alternatives Theorems

Exercise 5.23

So there exists $\tilde{v} \ge 0$ such that $A^{\mathsf{T}}\tilde{v} = 0$ and $b^{\mathsf{T}}\tilde{v} < 0$. Let us denote v^* a feasible solution to (\mathcal{D}). Pose, for $\varepsilon > 0$:

$$z = v^* + \varepsilon \tilde{v} \ge 0$$

z is admissible for (\mathcal{D}) :

$$A^{\mathsf{T}}z + c = \underbrace{A^{\mathsf{T}}v^* + c}_{=0} + \varepsilon \underbrace{A^{\mathsf{T}}\tilde{v}}_{=0} = 0$$

Furthermore,

$$-b^{\mathsf{T}}z = -b^{\mathsf{T}}v^* + \varepsilon \underbrace{(-b^{\mathsf{T}}\tilde{v})}_{>0} \xrightarrow{\varepsilon \to +\infty} +\infty$$

So (\mathcal{D}) is unbounded above, and $d^* = +\infty$.

A. Rocca

Presentation Part1

Perturbation & Sensibility Analysis

Dual of equivalent Primal

Examples of Alternatives Theorems

Exercise 5.23

We clearly see that the problem in the example is infeasible, so $p^* = +\infty$. Let us find its dual problem :

 $\begin{array}{l} \mbox{maximize} & -z_1+z_2 \\ \mbox{subject to} & z_2+1=0 \\ & z_1,z_2 \geq 0 \end{array}$

As we can see, $z_2 = -1$, which is not non-negative. So the problem is infeasible, and $d^* = -\infty$.