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Lagrangian dual function

Standard Form Optimization Problem:

p∗ := min f0(x)

s.t. fi (x) ≤ 0, i = 1, . . . ,m
hi (x) = 0, i = 1, . . . , p

∀x ∈ D ⊆ Rn

optimal value p∗
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Lagrangian dual function

Standard Form Optimization Problem:

minimize f0(x)

s.t. fi (x) ≤ 0, i = 1, . . . ,m
hi (x) = 0, i = 1, . . . , p

Lagrangian:

L(x , λ, ν) = f0(x) +
m∑

i=1

λi fi (x) +

p∑

j=1

νjhj(x)

= 〈f , (1, λ, ν)〉
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Lagrangian dual function

Standard Form Optimization Problem:

minimize f0(x)

s.t. fi (x) ≤ 0, i = 1, . . . ,m
hi (x) = 0, i = 1, . . . , p

Lagrange Dual Function:

g(λ, ν) = inf
x∈D

(L(x , λ, ν)

= inf
x∈D

(f0(x) +
m∑

i=1

λi fi (x) +

p∑

j=1

νjhj(x))

A. Rocca Duality 5 / 41



Duality

A. Rocca

Presentation
Part1

Perturbation
& Sensibility
Analysis

Dual of
equivalent
Primal

Examples of
Alternatives
Theorems

Exercise 5.23

Properties

g(λ, ν) is concave.
if λ ≥ 0, g(λ, ν) ≤ p∗, ∀ν

if x̂ is a feasible point, and λ ≥ 0 then:

L(x̂ , λ, ν) = f0(x̂) +
m∑

i=1

λi fi (x̂) +

p∑

j=1

νjhj(x̂) ≤ f0(x̂)

g(λ, ν) = inf
x∈D

(f0(x) +
m∑

i=1

λi fi (x) +

p∑

j=1

νjhj(x))

≤ L(x̂ , λ, ν) ≤ f0(x̂), ∀x̂ feasible
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Dual function & Conjugate

Reminder:
We call f ∗ the conjugate of f : Rn → R, the function:

f ∗(y) = sup
x∈D

(yT x − f (x))

A. Rocca Duality 8 / 41



Duality

A. Rocca

Presentation
Part1

Perturbation
& Sensibility
Analysis

Dual of
equivalent
Primal

Examples of
Alternatives
Theorems

Exercise 5.23

Dual function & Conjugate

f ∗(y) = sup
x∈D

(yT x − f (x))

For the Linear Constraint Optimization problem:

minimize f0(x)

s.t. Ax ≤ b

Cx = d

g(λ, ν) = inf
x
(f0(x) + λT (Ax − b) + νT (Cx − d))

= −bTλ− dTν − sup
x
((−ATλ− CTν)T x − f0(x))

= −bTλ− dTν − f ∗0 ((−ATλ− CTν))
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Examples - Least Squares

Least-norm solution of linear equations

minimize xTx
subject to Ax = b

dual function

• Lagrangian is L(x, ν) = xTx+ νT (Ax− b)

• to minimize L over x, set gradient equal to zero:

∇xL(x, ν) = 2x+ATν = 0 =⇒ x = −(1/2)ATν

• plug in in L to obtain g:

g(ν) = L((−1/2)ATν, ν) = −1

4
νTAATν − bTν

a concave function of ν

lower bound property: p⋆ ≥ −(1/4)νTAATν − bTν for all ν

Duality 5–4A. Rocca Duality 10 / 41
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Examples - Standard LP

Standard form LP

minimize cTx
subject to Ax = b, x � 0

dual function

• Lagrangian is

L(x, λ, ν) = cTx+ νT (Ax− b)− λTx

= −bTν + (c+ATν − λ)Tx

• L is affine in x, hence

g(λ, ν) = inf
x

L(x, λ, ν) =

{
−bTν ATν − λ+ c = 0
−∞ otherwise

g is linear on affine domain {(λ, ν) | ATν − λ+ c = 0}, hence concave

lower bound property: p⋆ ≥ −bTν if ATν + c � 0

Duality 5–5A. Rocca Duality 11 / 41
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Lagrange Dual Optimization Problem

Dual optimization problem:

d∗ := max g(λ, ν)

s.t. λ ≥ 0

dom g = (λ, ν)|g(λ, ν) > −∞
g(λ, ν) is concave, so this problem is a convex
optimization problem
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Definitions

Weak Duality:
d∗ ≤ p∗

Strong Duality:
d∗ = p∗

Duality Gap:
gap = p∗ − d∗
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Slater’s Constraint Qualification

If the primal problem is convex with the following form, we
have conditions to ensure strong duality:

p∗ := minimize f0(x)

s.t. fi (x) ≤ 0, i = 1 . . . ,m
Ax = b

Slater: If there exist x̂ in the relative interior of D satisfying:
fi (x̂) < 0 and Ax̂ = b, then strong duality holds.
This can be reduced to the constraints fi which are not affine.
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Examples - Inequality LP

Inequality form LP

primal problem
minimize cTx
subject to Ax � b

dual function

g(λ) = inf
x

(
(c+ATλ)Tx− bTλ

)
=

{
−bTλ ATλ+ c = 0
−∞ otherwise

dual problem
maximize −bTλ
subject to ATλ+ c = 0, λ � 0

• from Slater’s condition: p⋆ = d⋆ if Ax̃ ≺ b for some x̃

• in fact, p⋆ = d⋆ except when primal and dual are infeasible

Duality 5–12A. Rocca Duality 15 / 41
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Examples - Inequality LP

Geometric interpretation

for simplicity, consider problem with one constraint f1(x) ≤ 0

interpretation of dual function:

g(λ) = inf
(u,t)∈G

(t+ λu), where G = {(f1(x), f0(x)) | x ∈ D}

G
p⋆

g(λ)
λu + t = g(λ)

t

u

G
p⋆

d⋆

t

u

• λu+ t = g(λ) is (non-vertical) supporting hyperplane to G
• hyperplane intersects t-axis at t = g(λ)

Duality 5–15A. Rocca Duality 16 / 41
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Examples - Inequality LP

epigraph variation: same interpretation if G is replaced with

A = {(u, t) | f1(x) ≤ u, f0(x) ≤ t for some x ∈ D}

A

p⋆

g(λ)

λu + t = g(λ)

t

u

strong duality

• holds if there is a non-vertical supporting hyperplane to A at (0, p⋆)

• for convex problem, A is convex, hence has supp. hyperplane at (0, p⋆)

• Slater’s condition: if there exist (ũ, t̃) ∈ A with ũ < 0, then supporting
hyperplanes at (0, p⋆) must be non-vertical

Duality 5–16A. Rocca Duality 17 / 41
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Proof of Slater’s Constraint Qualification

[On Board]
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Sub-optimality

If x is a primal feasible point, and (λ, ν) a dual feasible point:

p∗ ≥ g(λ, ν)

0 ≤ f0(x)− p∗ ≤ f0(x)− g(λ, ν)

This leads to an absolute εabs and a relative εrel optimality
criteria:

f0(x)− g(λ, ν) ≤ εabs
f0(x)− g(λ, ν)

−f0(x)
≤ εrel , f0(x) < 0

f0(x)− g(λ, ν)

g(λ, ν)
≤ εrel , g(λ, ν) > 0
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KKT conditions - Non Convex

If f0, f1, . . . , fm, h0, . . . , hp are differentiable.
In case of strong duality, given the primal and dual optimal
points, x∗, λ∗, ν∗.
The Optimality KKT conditions are:

fi (x
∗) ≤ 0, i = 1, . . . ,m

hi (x
∗) = 0, i = 1, . . . , p
λ∗i ≥ 0, i = 1, . . . ,m

λ∗i fi (x
∗) = 0, i = 1, . . . ,m

∇f0(x∗) +
m∑

i=1

λ∗i∇fi (x∗) +
p∑

i=1

ν∗i ∇hi (x∗) = 0

A. Rocca Duality 20 / 41
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KKT conditions - Convex

fi (x̂) ≤ 0, i = 1, . . . ,m
hi (x̂) = 0, i = 1, . . . , p

λ̂i ≥ 0, i = 1, . . . ,m

λ̂i fi (x̂) = 0, i = 1, . . . ,m

∇f0(x̂) +
m∑

i=1

λ̂i∇fi (x̂) +
p∑

i=1

ν̂i∇hi (x̂) = 0

For a convex problem, any point satisfying the above
conditions is optimal with a 0 duality gap.
If Slater’s conditions are true, then the KKT conditions are
necessary and sufficient conditions for optimality.
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Sumary

L(x , λ, ν) = f0(x) +
∑

i

λi fi (x) +
∑

j

νjhj(x)

Original Problem

p∗ = min f0(x)

s.t. fi (x) ≤ 0
hj(x) = 0

Dual Problem

d∗ = max inf
x
L(x , λ, ν)

= max g(λ, ν)

s.t. λ ≥ 0

g(λ, ν) concave
d∗ ≤ p∗ :: weak duality
d∗ = p∗ :: strong duality
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Sumary

Original Problem

p∗ = min f0(x)

s.t. fi (x) ≤ 0
hj(x) = 0

Dual Problem

d∗ = max g(λ, ν)

s.t. λ ≥ 0

Complementary Slackness:
If strong duality holds, with (x∗, λ∗, ν∗) the optimal solutions.

λ∗i fi (x
∗) = 0, ∀i
λ∗i > 0⇒ fi (x

∗) = 0
fi (x

∗) < 0⇒ λ∗i = 0

A. Rocca Duality 23 / 41
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Perturbed Problem

Original Primal

p∗ = min f0(x)

s.t. fi (x) ≤ 0
hj(x) = 0

Perturbed Primal

p∗(u, v) = min f0(x)

s.t. fi (x) ≤ ui

hj(x) = vj

p∗(u, v) = inf{f0(x)| ∃x ∈ D, fi (x) ≤ ui , hj(x) = vj}
p∗(0, 0) = p∗

If the original problem is convex, then p∗(u, v) is a convex
function of (u, v).(Exercise 5.32)
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Global Sensibility Analysis

Let’s assume:
strong duality
dual optimum is attained in (λ∗, ν∗).

p∗(u, v) ≥ p∗(0, 0)− λ∗ᵀu − ν∗ᵀv

λ∗i � 0 & ui < 0 p∗(u, v)↗
(ν∗j � 0 & vj < 0)or(ν∗j � 0 & vj > 0) p∗(u, v)↗
NO guaranty for λ∗i � 0 and ui > 0 :: only a LOWER
BOUND

A. Rocca Duality 25 / 41
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Local Sensibility Analysis

If p∗(u, v) is differentiable:

λ∗i =
∂p∗(0,0)

∂ui

ν∗j = ∂p∗(0,0)
∂vj

By complementary slackness:

fi (x
∗) < 0⇒ λ∗i = 0 :: small change around ui = 0

fi (x
∗) = 0⇒ λ∗i > 0(� 0) :: p∗ greatly affected by ui

A. Rocca Duality 26 / 41
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Introducing New Variables

Original Problem

p∗ = min f0(Ax + b)

d∗ = max inf
x
(f0(Ax + b))

= max p∗ = p∗

Transformed Problem

p′∗ = min f0(y)

s.t. Ax + b = y

d ′∗ = max bᵀν − f ∗0 (ν)

s.t. Aᵀν = 0

Reminder:

g ′(ν) = inf
x ,y

(f0(y)− vᵀy + νᵀAx + bᵀν)

=

{
−f ∗0 (ν) + bᵀν, Aᵀν = 0

−∞, otherwise

A. Rocca Duality 27 / 41
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Introducing New Equality Constraints

Original Problem

p∗ = min f0(A0x + b0)

s.t. fi (Aix + bi ) ≤ 0

Transformed Problem

p′∗ = min f0(y0)

s.t. fi (yi ) ≤ 0
Aix + bi = yi

Leads to a new dual:

d ′∗ = max
∑

i

νᵀi bi − f ∗0 (ν0)−
∑

i

λi f
∗
i (νi/λi )

s.t. λ ≥ 0
∑

i

Aᵀi νi = 0

A. Rocca Duality 28 / 41
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Weak Alternatives

Either: (P1) has a solution OR (P2) has a solution OR none
(Only implication of the infeasibility).
Example:

fi (x) ≤ 0, ∀i , hj(x) = 0, ∀j , is feasible (1)

or
0 < g(λ, ν), λ ≥ 0, is feasible (2)

If x̂ a feasible point for (1), and (λ̂, ν̂) feasible for (2) then:

0 < g(λ̂, ν̂) ≤
∑

i

λ̂i fi (x̂)

︸ ︷︷ ︸
≤0

+
∑

j

ν̂jhj(x̂)

︸ ︷︷ ︸
=0

≤ 0

A. Rocca Duality 29 / 41
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Strong Alternatives

Either: (P1) has a solution OR (P2) has a solution (equivalence
between feasibility of one and infeasibility of the other).
Example, with fi convex ∀i :

fi (x) < 0, ∀i , ∃x ∈ relint(D), Ax = b, is feasible (3)

or
0 ≤ g(λ, ν), λ ≥ 0, λ 6= 0, is feasible (4)

A. Rocca Duality 30 / 41
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Farkas Lemma

The Farkas Lemma is a strong alternative:
Either

Ax = b, x ≥ 0

has a solution
or

Aᵀy ≥ 0, bᵀy < 0

has a solution

A. Rocca Duality 31 / 41
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Hilbert’s Nullstellensatz

Some generalization of alternatives theorems:
Let’s have Pi ∈ R[Cn], i = 1 . . .m.
Either

P1(x) = 0, . . . ,Pm(x) = 0

has a solution x ∈ Cn.
OR ∃Q1, . . . ,Qm ∈ R[Cn] such that

P1(x)Q1(x) + · · ·+ Pm(x)Qm(x) = −1
has a solution.
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5.23.1

By contradiction, assume

−c 6∈
{∑

i∈I
ziai |zi ≥ 0

}
= K

K is a convex closed cone, thus by the strict separating
hyperplane theorem, there exists ζ ∈ Rm and γ ∈ R such that :

−cᵀζ < γ,

(∑

i∈I
zia
ᵀ
i

)
ζ > γ, ∀zi ≥ 0
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5.23.1

Lemma : Let K ⊂ Rq be a cone. Suppose there exist p ∈ Rq

and M ∈ R such that

∀x ∈ K , pᵀx ≥ M

Then M ≥ 0
Proof : We will prove this by contradiction. Suppose there
exists x ′ ∈ K such that pᵀx ′ < 0 (and thus, M < 0). Consider

α =
2M
pᵀx ′

> 0 and y = αx ′

y ∈ K since α > 0 and x ′ ∈ K . But :

pᵀy = 2M
pᵀx ′

pᵀx ′
= 2M < M

since M < 0. That contradicts the fact that pᵀx ≥ M for all
x ∈ K .
A. Rocca Duality 34 / 41
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5.23.1

From the previous lemma, we see that γ ≥ 0, so(∑
i∈I zia

ᵀ
i

)
ζ > 0, ∀zi ≥ 0. Thus, by taking zi = 1, zj = 0

∀i 6= j , we have :
aᵀi ζ > 0, ∀i ∈ I

Furthermore, since −cᵀζ <
(∑

i∈I zia
ᵀ
i

)
ζ, ∀zi ≥ 0, by taking

zi = bi − aᵀi x
∗, which is nonnegative and equal to 0 for i ∈ I ,

we have :

−cᵀζ <

(∑

i∈I
(bi − aᵀi x

∗)aᵀi

)
ζ

= 0
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5.23.1

To sum this up, we have :

−cᵀζ < 0, aᵀi ζ > 0, ∀i ∈ I

For an ε > 0 small enough, let us consider d = x∗ − εζ. This d
is primal-feasible :

For i 6∈ I , aᵀi d = aᵀi x
∗

︸︷︷︸
<bi

−εaᵀi ζ < bi for ε small enough (the

strict inequality forms an open neighbourhood of x∗).
For i ∈ I , aᵀi d = aᵀi x

∗ − εaᵀi ζ = bi − εaᵀi ζ︸︷︷︸
>0

≤ bi .
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5.23.1

On top of that :

cᵀd = cᵀx∗ − εcᵀζ = p∗−εcᵀζ︸ ︷︷ ︸
<0

< p∗

This contradicts the fact that p∗ is the optimal value. So there
exists z ≥ 0 such that zi = 0 ∀i 6∈ I and Aᵀz + c = 0. This z is
dual feasible, thus −bᵀz ≤ p∗ (weak duality theorem). But :

−bᵀz = −
∑

i∈I
bizi = −x∗ᵀ

(∑

i∈I
ziai

)

︸ ︷︷ ︸
=−c

= cᵀx∗ = p∗

So z is dual optimal.
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5.23.2

We denote (P) the primal problem (that we suppose infeasible),
(D) the dual one. Consider (P ′) and its dual (D′) :

p′ = min 0
s.t. Ax ≤ b

(P ′)

d ′ = max − bᵀz

s.t. Aᵀz = 0
z ≥ 0

(D′)
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5.23.2

Since (P) is infeasible, so is (P ′), so p′∗ =∞. (D′) is feasible
(since z = 0 is feasible), so d ′ ≥ 0. Suppose d ′ = 0. Since :

(D′) is feasible
d ′ is finite
(P ′) is the dual of (D′)

we have, through question 1, d ′ = p′. So (P ′) should be
feasible, which is a contradiction. So d ′ > 0.
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5.23.2

So there exists ṽ ≥ 0 such that Aᵀṽ = 0 and bᵀṽ < 0. Let us
denote v∗ a feasible solution to (D). Pose, for ε > 0 :

z = v∗ + εṽ ≥ 0

z is admissible for (D) :

Aᵀz + c = Aᵀv∗ + c︸ ︷︷ ︸
=0

+ε Aᵀṽ︸︷︷︸
=0

= 0

Furthermore,

−bᵀz = −bᵀv∗ + ε (−bᵀṽ)︸ ︷︷ ︸
>0

−−−−→
ε→+∞

+∞

So (D) is unbounded above, and d∗ = +∞.
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5.23.3

We clearly see that the problem in the example is infeasible, so
p∗ = +∞. Let us find its dual problem :

maximize − z1 + z2

subject to z2 + 1 = 0
z1, z2 ≥ 0

As we can see, z2 = −1, which is not non-negative. So the
problem is infeasible, and d∗ = −∞.
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