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Alexandre Consider
Vieira J V R
: —
Reminder
. V' : infinite-dimensional vector space (usually, a function space).
uler-
Lagrange J is called a functional.
Hamiltonian .
framework Definition: First Variation
Add . . . . . A
Pt For a function y € V, we call the first variation of J at y, the linear functional

second order— 0J]y, 1 V — R satisfying, for all n and all o

conditions

Iy +an) = J(y) + Jly(n)a + o()
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Reminder

Suppose we want to find a local minimum of a functional J over a subset A of V,
associated to a certain norm.

Definition: Admissible perturbation

We call a perturbation € V' admissible if y* + an € A for all a close enough to 0.

If y* is a local minimum, then for all admissible perturbations 7, we must have

6Jly(n) =0
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Basic Problem

Reading
group

Alexandre Among all ‘51([3, b],R) curves y, satisfying given boundary conditions

Vieira

Reminder Y(a):)/OaY(b):yl
Euler-

L . . . .
S find (local) minima of the cost functional
Hamiltonian

framework

; b
pdins Jy) = / L(x, y(x), y'(x))dx
a

Second order
conditions

L called the Lagrangian (Analytical Mechanics Community) or the running cost
(Optimal Control Community).
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First-Order conditions

b
min / L(x, y(x), ¥ (x))dx = J(y)

ye¢!
sit. y(a) =y, y(b) = w1

As we did in the finite dimensional case, let us consider € perturbations 7 around
a reference curve y:
y t+an

In order to still comply with the constraints on y, we choose the perturbations such
that n(a) = n(b) = 0.
A necessary condition for y to be optimal is, for every such perturbation 7:

6Jly(n) =0
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First-Order conditions

Reading

group _
Mocandre 0J1y(n) = lim S+ aZ) 0 _ Jol_ Iy +an)
If we assume enough smoothness for L, we can invert derivation and summation.
Feminder Eventually:
ogrange b
i 510 = [ (L xy (¥ () + Loy )y () ()
a
Coints We perform an integration by part on the second term under the summation sign:

Second order
conditions

b b
Loy, (M ()b == [ Ly (0. (Ot

+ [L2(x, y(x), ¥ (x))n(x)];
=0
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First-Order conditions

b
) = [ (e 0y (60) = Loty 0 ) )

for all € perturbation 7. We can therefore prove easily that this implies nullity of
the integrand:

Ly(X,y(X),y/(X)) = %Lz(x,y(x),y'(x)), Vx € [a, b]

Euler-Lagrange Equation

The first order condition for a weak minimum of the Basic calculus of variation
problem is given by the Euler-Lagrange equation:

d
Ly = &Ly/
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no y" : if L= L(x,y’), the EL equation reduces to:

Ly(x.y'(x)) = est

This function is called the momentum.

o "no x" :if L= L(y,y’), the EL equation reduces to:
Lyy'—L=cst

This function is called the Hamiltonian.
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Extension: variable-endpoint

Reading

group We now complicate a bit the problem: we suppose the endpoint now free.
Alexandre
Vieira b
_ min / L(x,y(x),y'(x))dx = J(y)
Reminder }/6%71 a
uler-
Eagrange s.t. Y(a) = yO
Hamiltonian . i X
framework Most of the previous work still hold: the first variation now reads:

Adding
constraints

b
S a0 = [ (L) - L.y (0) ) b

+ Lz(b, y(b), y'(b))n(b)
The perturbations with 7(b) = 0 are still admissible, so the EL equations still holds.
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It implies that:

L.(b,y(b),y'(b))n(b) =0

Since n(b) is arbitrary, we have the following transversality condition:

L.(b,y(b),y'(b)) =0
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Hamilton's equation

Reading We defined a few slides before the momentum:
group

Alexandre P = Ly’ (X7 y7 y/)

Vieira

Reminder and the Hamiltonian:

Euler-
p2EianES H(vav_y/7p):p'.y/_L(X7-y’y/)

Hamiltonian

framework

Adding Along a curve y which is an extremal (e.g. solution of the EL equation), and
smgellis considering p as a function of x, we have:

Second order

conditions dy

o Hp(x, y(x),y'(x))
d  d

P L0y (3),y() = Ly by (x). () = —Hy(x ¥(x), ¥ ()
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Hamilton's equation

Reading
group Hamilton's equation

Al s ’ 5 .
orandre We call Hamilton's canonical equations:
Reminder / /
y =Hp, p=-H
Euler- P Y
Lagrange

Several remarks:

Hamiltonian

UETCITE) S @ Later, in the optimal control framework, p will be called the adjoint state.

Addin . . .

constraints @ We can see the construction of the Hamiltonian as a Legendre transform of the
Second order Lagrangian L. Recall, from Boyd's book, that the Legendre transform * of a

conditions

function f is defined by:

f*(p) = mgX{pﬁ - (&)}
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Integral constraints

Reading
group
Alexandre We now add constraints to the curves we define admissible. A first constraint is of
the form:
Reminder b ,
Euler- Cly)= [ M(x,y(x),y'(x))dx = Co
Lagrange a

v As it is done in the finite-dimensional case, we add this constraint to the running
cost, multiplied by a multiplier A (augmented cost). Applying directly the EL

Adding . i i i
constraints equations, there must exist a constant A such that the optimal curve y complies
Secgruli order Wlth
conditions d
(L+A"M), = ?(L +A*M),y
X
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IR Sl Theorem: Inverse Function Theorem

conditions

Integral constraints

Given two perturbations 7y, 7, arbitrary, consider :
F: (o1, 00) = (J(y + cam + aom2), C(y™ + a1ny + aonz))

The Jacobian matrix of F at (0,0) is :

3J1y(m)  6J)y(m2)
JF(0,0) = <5Cy(77771) 5Cy(777722)>

If the total derivative of a continuously differentiable function F defined from an
open set of R” into R” is invertible at a point p (i.e., the Jacobian determinant of F
at p is non-zero), then F is an invertible function near p. Moreover, the inverse
function F~! is also continuously differentiable.
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Integral constraints

With this theorem, if y is a minimum, it implies that J£(0,0) has to be singular. It
implies that there exists (Ao, \*) € R?\(0,0) such that:

)\05./\),(?7;) + A*éC\y(n;) = 0, i=1,2

o If y is an extremal of C, then 6C|, = 0, and then either \g = 0 (abnormal
case), or 8J|,(m) = 0, whatever 71, so y would also be an extremal of J.

o Otherwise, there exists 71 such that 6C|,(n1) # 0 and A\g # 0 (we can thus
divide by A\g each equality, or take A\g = 1). Define \* as:

o m)

5C\y(771)

It implies that for all perturbation 72, §J|,(12) + A*6C|,(n2) = 0.
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Integral constraints

Reading
group We drop the 2 and write 7 for the perturbation.
lexandre
AVieira b d
0 = [ (e 00) = 5 Lelxy0.y 0 )
Euler- ?
Lagrange b d
ntenie 51y = [ (M0, 00) = S M)y ) 1)
Adding

constraints

conditions 3J1y(n) +X"6C|y(n) =

b
[ 2 ey 0.y 00 = (L X M)y, () ) )
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Integral constraints

6Jly(n) +A"0C|y(n) =

b
[ (20 0. 00) = (L X M) 0. () ) )

Since that must be true for all perturbation 1, we have the following theorem:

Euler-Lagrange equation in the integral constrained case

There exist two scalars Ag, A*, not simultaneously nought, such that the optimal
curve y complies with:
. d
(AL +A"M), = ”

X

()\OL = )\*M)y/

The degenerate cases appear when A\g = 0.
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Non-Integral constraints

When the constraint is an equality constraint on the whole curve:
M(x,y(x),y'(x)) = 0, ¥x € [a, b]

the same logic applies, but A* is not a scalar anymore. More precisely:
g pPp y y

Euler-Lagrange equation in the non-integral constrained case

There exist a scalar \g and a function A\*, never simultaneously nought, such that
the optimal curve y complies with:

d
(oL +\"M), = —

X

(oL + A*M),,

The degenerate cases appear when A\g = 0.
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Necessary conditions for a weak minimum

Reading
group

ezt Second order conditions are here a bit more tricky. There are here just quickly
presented, for future reference. Throughout this, we consider only the basic calculus
ettt of variation problem.

Euler-

R Legendre's necessary condition for a weak minimum

Hamiltonian

framework A necessary condition for the curve y to minimize the cost is: for all x € [a, b], we
Adding must have

constraints ’

Second order Ly/y’(X7Y(X)7y (X)) Z O

conditions

There is also a sufficient condition, necessitating the notion of conjugate point. The
reader interested are referred to section 6.2 of the book.
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o Two fun (and historical!) examples: exercises 2.5 and 2.10

o A more theoretic one: exercise 2.6
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