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Reminder

Consider
J : V → R

V : infinite-dimensional vector space (usually, a function space).
J is called a functional.

Definition: First Variation
For a function y ∈ V , we call the first variation of J at y , the linear functional
δJ y : V → R satisfying, for all η and all α:

J(y + αη) = J(y) + δJ y (η)α+ o(α)
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Reminder

Suppose we want to find a local minimum of a functional J over a subset A of V ,
associated to a certain norm.

Definition: Admissible perturbation
We call a perturbation η ∈ V admissible if y∗ + αη ∈ A for all α close enough to 0.

Proposition
If y∗ is a local minimum, then for all admissible perturbations η, we must have

δJ y (η) = 0
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Basic Problem

Among all C 1([a, b],R) curves y , satisfying given boundary conditions

y(a) = y0, y(b) = y1

find (local) minima of the cost functional

J(y) =

∫ b

a
L(x , y(x), y ′(x))dx

L called the Lagrangian (Analytical Mechanics Community) or the running cost
(Optimal Control Community).
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First-Order conditions

min
y∈C 1

∫ b

a
L(x , y(x), y ′(x))dx = J(y)

s.t. y(a) = y0, y(b) = y1

As we did in the finite dimensional case, let us consider C 1 perturbations η around
a reference curve y :

y + αη

In order to still comply with the constraints on y , we choose the perturbations such
that η(a) = η(b) = 0.
A necessary condition for y to be optimal is, for every such perturbation η:

δJ y (η) = 0
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First-Order conditions

δJ y (η) = lim
α→0

J(y + αη)− J(y)

α
=

d

dα α=0
J(y + αη)

If we assume enough smoothness for L, we can invert derivation and summation.
Eventually:

δJ y (η) =

∫ b

a
(Ly (x , y(x), y

′(x))η(x) + Lz(x , y(x), y
′(x))η′(x))dx

We perform an integration by part on the second term under the summation sign:∫ b

a
Lz(x , y(x), y

′(x))η′(x)dx = −
∫ b

a

d

dx
Lz(x , y(x), y

′(x))η(x)dx

+ [Lz(x , y(x), y
′(x))η(x)]ba︸ ︷︷ ︸

=0
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First-Order conditions

δJ y (η) =

∫ b

a

(
Ly (x , y(x), y

′(x))− d

dx
Lz(x , y(x), y

′(x))

)
η(x)dx

for all C 1 perturbation η. We can therefore prove easily that this implies nullity of
the integrand:

Ly (x , y(x), y
′(x)) =

d

dx
Lz(x , y(x), y

′(x)), ∀x ∈ [a, b]

Euler-Lagrange Equation
The first order condition for a weak minimum of the Basic calculus of variation
problem is given by the Euler-Lagrange equation:

Ly =
d

dx
Ly ′
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Special cases

"no y" : if L = L(x , y ′), the EL equation reduces to:

Ly ′(x , y ′(x)) = cst

This function is called the momentum.
"no x" : if L = L(y , y ′), the EL equation reduces to:

Ly ′y ′ − L = cst

This function is called the Hamiltonian.

11 / 26



Reading
group

Alexandre
Vieira

Reminder

Euler-
Lagrange

Hamiltonian
framework

Adding
constraints

Second order
conditions

Extension: variable-endpoint

We now complicate a bit the problem: we suppose the endpoint now free.

min
y∈C 1

∫ b

a
L(x , y(x), y ′(x))dx = J(y)

s.t. y(a) = y0

Most of the previous work still hold: the first variation now reads:

δJ y (η) =

∫ b

a

(
Ly (x , y(x), y

′(x))− d

dx
Lz(x , y(x), y

′(x))

)
η(x)dx

+ Lz(b, y(b), y
′(b))η(b)

The perturbations with η(b) = 0 are still admissible, so the EL equations still holds.
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Extension: variable-endpoint

It implies that:
Lz(b, y(b), y

′(b))η(b) = 0

Since η(b) is arbitrary, we have the following transversality condition:

Lz(b, y(b), y
′(b)) = 0
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Hamilton’s equation

We defined a few slides before the momentum:

p = Ly ′(x , y , y ′)

and the Hamiltonian:

H(x , y , y ′, p) = p · y ′ − L(x , y , y ′)

Along a curve y which is an extremal (e.g. solution of the EL equation), and
considering p as a function of x , we have:

dy

dx
= Hp(x , y(x), y

′(x))

dp

dx
=

d

dx
Ly ′(x , y(x), y ′(x)) = Ly (x , y(x), y

′(x)) = −Hy (x , y(x), y
′(x))
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Hamilton’s equation

Hamilton’s equation
We call Hamilton’s canonical equations:

y ′ = Hp, p
′ = −Hy

Several remarks:
1 Later, in the optimal control framework, p will be called the adjoint state.
2 We can see the construction of the Hamiltonian as a Legendre transform of the

Lagrangian L. Recall, from Boyd’s book, that the Legendre transform f ∗ of a
function f is defined by:

f ∗(p) = max
ξ
{pξ − f (ξ)}
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Integral constraints

We now add constraints to the curves we define admissible. A first constraint is of
the form:

C (y) =

∫ b

a
M(x , y(x), y ′(x))dx = C0

As it is done in the finite-dimensional case, we add this constraint to the running
cost, multiplied by a multiplier λ (augmented cost). Applying directly the EL
equations, there must exist a constant λ such that the optimal curve y complies
with:

(L+ λ∗M)y =
d

dx
(L+ λ∗M)y ′
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Integral constraints

Given two perturbations η1, η2 arbitrary, consider :

F : (α1, α2) 7→ (J(y + α1η1 + α2η2),C (y∗ + α1η1 + α2η2))

The Jacobian matrix of F at (0, 0) is :

JF (0, 0) =
(
δJ y (η1) δJ y (η2)
δC y (η1) δC y (η2)

)

Theorem: Inverse Function Theorem
If the total derivative of a continuously differentiable function F defined from an
open set of Rn into Rn is invertible at a point p (i.e., the Jacobian determinant of F
at p is non-zero), then F is an invertible function near p. Moreover, the inverse
function F−1 is also continuously differentiable.
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Integral constraints

With this theorem, if y is a minimum, it implies that JF (0, 0) has to be singular. It
implies that there exists (λ0, λ

∗) ∈ R2\(0, 0) such that:

λ0δJ y (ηi ) + λ∗δC y (ηi ) = 0, i = 1, 2

If y is an extremal of C , then δC y = 0, and then either λ0 = 0 (abnormal
case), or δJ y (η1) = 0, whatever η1, so y would also be an extremal of J.
Otherwise, there exists η1 such that δC y (η1) 6= 0 and λ0 6= 0 (we can thus
divide by λ0 each equality, or take λ0 = 1). Define λ∗ as:

λ∗ = − δJ y (η1)

δC y (η1)

It implies that for all perturbation η2, δJ y (η2) + λ∗δC y (η2) = 0.
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Integral constraints

We drop the 2 and write η for the perturbation.

δJ y (η) =

∫ b

a

(
Ly (x , y(x), y

′(x))− d

dx
Lz(x , y(x), y

′(x))

)
η(x)dx

δC y (η) =

∫ b

a

(
My (x , y(x), y

′(x))− d

dx
Mz(x , y(x), y

′(x))

)
η(x)dx

δJ y (η) + λ∗δC y (η) =∫ b

a

(
(L+ λ∗M)y (x , y(x), y

′(x))− d

dx
(L+ λ∗M)z(x , y(x), y

′(x))

)
η(x)dx
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Integral constraints

δJ y (η) + λ∗δC y (η) =∫ b

a

(
(L+ λ∗M)y (x , y(x), y

′(x))− d

dx
(L+ λ∗M)z(x , y(x), y

′(x))

)
η(x)dx

Since that must be true for all perturbation η, we have the following theorem:

Euler-Lagrange equation in the integral constrained case
There exist two scalars λ0, λ

∗, not simultaneously nought, such that the optimal
curve y complies with:

(λ0L+ λ∗M)y =
d

dx
(λ0L+ λ∗M)y ′

The degenerate cases appear when λ0 = 0.
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Non-Integral constraints

When the constraint is an equality constraint on the whole curve:

M(x , y(x), y ′(x)) = 0, ∀x ∈ [a, b]

the same logic applies, but λ∗ is not a scalar anymore. More precisely:

Euler-Lagrange equation in the non-integral constrained case
There exist a scalar λ0 and a function λ∗, never simultaneously nought, such that
the optimal curve y complies with:

(λ0L+ λ∗M)y =
d

dx
(λ0L+ λ∗M)y ′

The degenerate cases appear when λ0 = 0.
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Necessary conditions for a weak minimum

Second order conditions are here a bit more tricky. There are here just quickly
presented, for future reference. Throughout this, we consider only the basic calculus
of variation problem.

Legendre’s necessary condition for a weak minimum

A necessary condition for the curve y to minimize the cost is: for all x ∈ [a, b], we
must have

Ly ′y ′(x , y(x), y ′(x)) ≥ 0

There is also a sufficient condition, necessitating the notion of conjugate point. The
reader interested are referred to section 6.2 of the book.
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Exercises

Two fun (and historical!) examples: exercises 2.5 and 2.10
A more theoretic one: exercise 2.6
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