Reading group

Alexandre Vieira

Variational approach

Pontryagin

Existence of optimal control

Exercises

Reading group: Calculus of Variations and Optimal Control Theory by Daniel Liberzon

Alexandre Vieira

29th May 2017

Optimal Control Problem

Reading group

Alexandre Vieira

Variational approach

Pontryagin

Existence of optimal control

Exercises

$$\begin{split} \min_{u \in U} \ &J(u) := \int_{t_0}^{t_f} L(t, x(t), u(t)) dt + K(t_f, x_f) \\ \text{s.t.} \ &\dot{x}(t) = f(t, x(t), u(t)) \\ & (t_0, x(t_0)) \in S_0 \\ & (t_f, x(t_f)) \in S \end{split}$$

• $x(\cdot) \in \mathbb{R}^n$: the state

- u : the control
- $U \subseteq \mathbb{R}^m$: the control set
- L : the running cost
- K : the terminal cost

- $(t_0, x(t_0))$: the initial time and state
- $(t_f, x(t_f))$: the final time and state
- S_0 : the initial set
- S : the target set

Variational approach

Reading group

Alexandre Vieira

Variational approach

Pontryagin

Existence of optimal control

Exercises

Let us apply some results of the Calculus of variation on the previous problem, where:

• $U = \mathbb{R}^m$

•
$$S_0 = \{t_0\} \times \{x_0\}$$

•
$$S = \{t_f\} \times \mathbb{R}^m$$

•
$$K = K(x_f)$$

Exactly as we did before, one uses perturbation of the optimal solution to find necessary conditions. But this time, the perturbation will be on the optimal control.

Variational approach: linearization

Reading group

Alexandre Vieira

Variational approach

Pontryagin

Existence of optimal control

Exercises

Let u^* be an optimal control : $J(u^*) \leq J(u)$ for all piecewise continuous controls u. Consider:

$$u = u^* + \alpha \xi$$

where ξ is a piecewise continuous function for $[t_0, t_f]$ to \mathbb{R}^m and α a real parameter. This gives rise to a perturbed state:

$$x(t, \alpha) = x^*(t) + \alpha \eta(t) + o(\alpha)$$

where, obviously, $\eta(t_0) = 0$. Deriving it according to α :

 $x_{lpha}(t,0) = \eta(t), \ \forall t \in [t_0,t_f]$

We differentiate this according to time:

Variational approach: linearization

Reading group

Alexandre Vieira

Variational approach

Pontryagin

Existence of optimal control

Exercises

 $\dot{\eta}(t) = f_x(t, x^*(t), u^*(t))\eta(t) + f_u(t, x^*(t), u^*(t))\xi(t)$

We rewrite more compactly as:

 $\dot{\eta} = A_*(t)\eta + B_*(t)\xi, \ \eta(t_0) = 0$

where

$$A_*(t) = f_{x|*}(t) = f_x(t, x^*(t), u^*(t))$$
$$B_*(t) = f_{u|*}(t) = f_u(t, x^*(t), u^*(t))$$

Remark

This is the linearization of the original system around the optimal trajectory; cf. Sontag's book

Variational approach: augmented cost

Reading group

Alexandre Vieira

Variational approach

Pontryagin

Existence of optimal control

Exercises

Now, how to deal with the equality constraint $\dot{x} = f(t, x, u)$? Via augmented cost!

$$J(u) = \int_{t_0}^{t_f} \left[L(t, x(t), u(t)) + \langle p(t), \dot{x}(t) - f(t, x(t), u(t)) \rangle \right] dt + K(x_f)$$

for some \mathscr{C}^1 function p to be selected later. Once again, we introduce the Hamiltonian:

$$H(t, x, u, p) = \langle p, f(t, x, u) \rangle - L(t, x, u)$$

such that the augmented cost becomes:

$$J(u) = \int_{t_0}^{t_f} \left(\langle p(t), \dot{x}(t) \rangle - H(t, x(t), p(t), u(t)) \right) dt + K(x_f)$$

In order to find necessary condition, we need to compute the first variation $\delta J|_{u^*}$.

Reading group

Alexandre Vieira

Variational approach

Pontryagin

Existence of optimal control

Exercises

Notation

From now on, we use \approx to write approximation up to order 1.

Let us recall:

$$J(u) - J(u^*) = J(u^* + \alpha \xi) - J(u^*) \approx \delta J|_{u^*}(\xi) \alpha$$

We write first order approximations of the three components in J:

$$\begin{split} \mathcal{K}(x(t_f)) - \mathcal{K}(x^*(t_f)) &= \mathcal{K}(x^*(t_f) + \alpha \eta(t_f) + o(\alpha)) - \mathcal{K}(x^*(t_f)) \approx \langle \mathcal{K}_x(x^*(t_f)), \alpha \eta(t_f) \rangle \\ \mathcal{H}(t, x, p, u) - \mathcal{H}(t, x^*, u^*, p) \approx \langle \mathcal{H}_x(t, x^*, u^*, p), \alpha \eta \rangle + \langle \mathcal{H}_u(t, x^*, u^*, p), \alpha \xi \rangle \\ \int_{t_0}^{t_f} \langle p(t), \dot{x}(t) - \dot{x}^*(t) \rangle dt \approx \langle p(t_f), \alpha \eta(t_f) \rangle - \int_{t_0}^{t_f} \langle \dot{p}(t), \alpha \eta(t) \rangle dt \end{split}$$

Reading group Alexandre Vieira

Combining all of this, we have:

Pontryagin

Existence of optimal control

Exercises

$$\begin{split} \delta J|_{u^*}(\xi) &= -\int_{t_0}^{t_f} \left(\langle \dot{p} + H_x(t, x^*, u^*, p), \eta \rangle + \langle H_u(t, x^*, u^*, p), \xi \rangle \right) dt \\ &+ \langle p(t_f) + \mathcal{K}_x(x^*(t_f)), \eta(t_f) \rangle \end{split}$$

where η is related to ξ through the linearization found earlier:

$$\dot{\eta} = A_*(t)\eta + B_*(t)\xi, \ \eta(t_0) = 0$$

Now, the first order condition says that we must have, for all ξ , $\delta J|_{u^*}(\xi) = 0$. But we haven't made any choice concerning p so far!

Reading group

Alexandre Vieira

Variational approach

Pontryagin

Existence of optimal control

Exercises

Let p^* be the solution of the differential equation:

$$\dot{p} = -H_x(t, x^*, u^*, p), \ p(t_f) = K(x^*(t_f))$$

thus, we are left with:

$$\delta J|_{u^*}(\xi) = -\int_{t_0}^{t_f} \langle H_u(t,x^*,u^*,p^*),\xi
angle dt = 0$$

true for all ξ . This, in turn, implies that:

 $\forall t \in [t_0, t_f], \ H_u(t, x^*(t), u^*(t), p^*(t)) = 0$

Reading group

Alexandre Vieira

Variational approach

Pontryagin

Existence of optimal control

Exercises

Summary

Let u^* be the optimal solution to the optimal control problem and x^* the associated state. Then there exists a function p^* (called the *adjoint state*) such that:

$$\dot{x} = H_p|_*$$

 $\dot{p} = -H_x|_*$

$$p(t_f) = K(x^*(t_f))$$

 $H_{\mu|_*} = 0$

Variational approach: critique

Reading group

Alexandre Vieira

Variational approach

Pontryagin

Existence of optimal control

Exercises

However, this method has several drawbacks:

- We never took care of the control set U (since here, it is \mathbb{R}^m): it may be a problem when constructing perturbation of u^* .
- Target set: the perturbation never took into consideration the fact that we must reach a certain prescribed target set
- The perturbation were taken here *small* (α was thought as small!). We would like to consider also broader perturbations.

Pontryagin's Maximum Principle

Reading group

Alexandre Vieira

Variational approach

Pontryagin

Existence of optimal control

Exercises

$$\min_{u(\cdot) \in U} J(u) := \int_{t_0}^{t_f} L(t, x(t), u(t)) dt + K(t_f, x_f)$$

s.t. $\dot{x}(t) = f(t, x(t), u(t)),$
 $x(t_0) \in S_0,$
 $x(t_f) \in S$

Theorem for fixed initial time

Let $u^* : [t_0, t_f] \to U$ be an optimal control and let $x^* : [t_0, t_f] \to \mathbb{R}^n$ be the corresponding optimal state trajectory. Then there exist a function $p^* : [t_0, t_f] \to \mathbb{R}^n$ and a constant $p_0^* \le 0$ satisfying $(p_0^*, p^*(t)) \ne 0$ for all $t \in [t_0, t_f]$ and having the following properties:

Pontryagin's Maximum Principle

Reading group

Alexandre Vieira

Variational approach

Pontryagin

Existence of optimal control

Exercises

0

Theorem for fixed initial time

(1) x^* and p^* satisfy the equations:

$$\dot{x}^* = H_p(t, x^*, u^*, p^*, p_0^*)$$

 $\dot{p}^* = -H_x(t, x^*, u^*, p^*, p_0^*)$

where the Hamiltonian $H:\mathbb{R}\times\mathbb{R}^n\times U\times\mathbb{R}^n\times\mathbb{R}\to\mathbb{R}$ is defined as:

$$\begin{split} & \mathcal{H}(t,x,u,p,p_0) = \langle p,f(t,x,u) \rangle + p_0 \mathcal{L}(t,x,u) \\ & x(t_0) \in S_0, \, x(t_f) \in S, \\ & p(t_0) \perp \, \mathcal{T}_{x^*(t_0)} S_0 \text{ and } p(t_f) - p_0^* \frac{\partial \mathcal{K}}{\partial x}(t_f,x(t_f)) \perp \, \mathcal{T}_{x^*(t_f)} S_0 \end{split}$$

Pontryagin's Maximum Principle

Reading group

Alexandre Vieira

Variational approach

Pontryagin

Existence of optimal control

Exercises

Theorem for fixed initial time

- 3 $H(t, x^*(t), u^*(t), p^*(t), p^*_0) \ge H(t, x^*(t), u(t), p^*(t), p^*_0)$ for all $u(t) \in U$ and $t \in [t_0, t_f]$

Remark : Assume $S = \{x \in \mathbb{R}^n : h_1(x) = \dots = h_{n-k}(x) = 0\}$ (a k codimensional manifold), where all h_i are smooth. Then, $p \perp T_x S$ actually means:

$$\langle p, d \rangle = 0, \ \forall d \in T_x S$$

where

$$T_x S = \{ d \in \mathbb{R}^n : \langle \nabla h_i(x), d \rangle = 0, \ i = 1, ..., n - k \}$$

Example: Double integrator

Reading group

Alexandre Vieira

Variational approach

Pontryagin

Existence of optimal control

Exercises

We apply the Maximum Principle to the time-optimal control problem (i.e. $L \equiv 1$, $K \equiv 0$) of the system:

$$\ddot{x}=u, \ u(t)\in [-1,1]$$

that we represent by the state-space equations:

$$\dot{x}_1 = x_2, \ \dot{x}_2 = u$$

with $x_1(t_0)$ and $x_2(t_0)$ are known. The Hamiltonian is $H = p_1x_2 + 2u + p_0$. According to the Maximum Principle, the costate p^* must satisfy the adjoint equation:

$$\begin{pmatrix} \dot{p}_1^* \\ \dot{p}_2^* \end{pmatrix} = \begin{pmatrix} 0 \\ -p_1^* \end{pmatrix}$$

Thus, there exists constants c_1 and c_2 such that $p_2^*(t) = -c_1t + c_2$, so p_2 is a linear function of time.

Example: Double integrator

Reading group

Alexandre Vieira

Variational approach

Pontryagin

Existence of optimal control

Exercises

Next, from the Hamiltonian maximisation condition and the fact that U = [-1, 1], we have:

$$u^*(t) = ext{sign} \ (p_2^*(t)) = egin{cases} 1 & ext{if} \ p_2^*(t) > 0 \ -1 & ext{if} \ p_2^*(t) < 0 \ ? & ext{if} \ p_2^*(t) = 0 \end{cases}$$

Since p_2 is a linear function of time (and we can prove it is not identically 0), it crosses 0 at most once, so u will switch between values -1 and 1: this is what we call the *bang-bang property*.

Example: Linear Systems

Reading group

Alexandre Vieira

Variational approach

Pontryagin

Existence of optimal control

Exercises

We can derive the same expression for more general linear systems:

$$\dot{x} = Ax + Bu$$

with $U = [-1, 1]^m$. If we denote by b_i the columns of B, we prove in the same way as before that:

$$u_i(t) = \operatorname{sign}(\langle p(t), b_i \rangle)$$

Thus, the function $B^{T}p(t)$ will tell us what value in $\{-1,1\}^{m} u^{*}(t)$ will take on $[t_{0}, t_{f}]$. $B^{T}p(t)$ is called the *switching function*.

Does the optimal control exist?

Reading group

Alexandre Vieira

Variational approach

Pontryagin

Existence of optimal control

Exercises

So far, we have only necessary conditions to find optimal *candidates*. But are we even sure an optimal solution exists?

The next theorem addresses this problem (and this is not an easy one...).

Does the optimal control exist?

Reading group

Alexandre Vieira

Variational approach

Pontryagin

Existence of optimal control

Exercises

Theorem

Suppose that U is compact and that S is accessible from S_0 (i.e., there exists a control leading from S_0 to S). Let U be the set of controls with value in U joining S_0 and S. We also suppose that:

① there exists a positive scalar b such that the trajectory x_u associated to $u \in U$ is uniformly bounded by b on $[t_0, t_f]$, as long with t_f . It means:

 $\exists b > 0; \forall u \in \mathcal{U}, \forall t \in [t_0, t_f], \ t_f + \|x_u(t)\| \leq b$

2 For all
$$(t,x) \in \mathbb{R}^{1+n}$$
, the set $V(t,x) = \left\{ \begin{pmatrix} f(t,x,u) \\ L(t,x,u) + \gamma \end{pmatrix} | u \in U, \gamma \ge 0 \right\}$ is convex

So there exists an optimal control u on $[t_0, t_f]$ such that the corresponding trajectory joins S_0 and S in time t_f with minimal cost.

Reading group

Alexandre Vieira

Variational approach

Pontryagin

Existence of optimal control

Exercises

• Use the Maximum Principle to derive necessary conditions for the unconstrained linear-quadratic optimal problem:

$$\min_{u(\cdot)\in\mathbb{R}^{m}} \int_{0}^{t_{f}} (x(t)^{\mathsf{T}}Q(t)x(t) + u(t)^{\mathsf{T}}W(t)u(t)) dt$$

s.t. $\dot{x}(t) = A(t)x(t) + B(t)u(t) + r(t)$
 $x(0) = x_{0}$

where $Q \in \mathbb{R}^{n \times n}$ and $W \in \mathbb{R}^{m \times m}$ are symmetric positive semi-definite matrices. (Answer: $u(t) = W(t)^{-1}B(t)p(t)$, $\dot{p} = A^{\mathsf{T}}p + Qx$, p(T) = -Qx(T).)

Exercises

- Reading group
- Alexandre Vieira

Variational approach

Pontryagin

Existence of optimal control

Exercises

Consider the linear system x(t) = A(t)x(t) + B(t)u(t) + r(t), x(0) = x_0. The problem here is called the tracking problem: we want a solution x(·) ∈ ℝⁿ of the previous system tracking on [0, T] a given C¹ trajectory ξ(·) ∈ ℝⁿ, starting for a point ξ₀.

We introduce the error $z(t) = x(t) - \xi(t)$. We want to minimize the following quadratic cost:

$$J(u) = z(T)^{\mathsf{T}} Q z(t) + \int_0^T \left(z(t)^{\mathsf{T}} Q z(t) + u(t)^{\mathsf{T}} W u(t) \right) dt$$

- Write this problem as an optimal control problem on z (differentiate z to obtain the corresponding ODE).
- ② Use the Maximum Principle to obtain the necessary conditions of optimality (they are here also sufficient)
- 3 Application: use this for the oscillator $\ddot{x} + x = u$, x(0) = 0, $\dot{x}(0) = 1$, to follow the curve $(\cos(t), \sin(t))$ on $[0, 2\pi]$. Do a numerical implementation.